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INVESTIGATION OF THE HIGHER-ORDER ELEMENTS

IN THE SAIMSON2 CODE

Abstract

by Steven Scott Miller, M.S.
Washington State University

August 1986

Chair: Harold C. Sorensen

The objective of this research effort was to determine if the current

finite element formulation in the SAMSON2 code for the eight-node quadrila-

teral higher-order isoparametric continuum element produces consistent and

reliable results. Some effort was also performed toward investigating the

finite element formulations for the five-node and the six-node triangular iso-

parametric continuum elements.

Four tasks were executed in this research effort. The first task was a

study of some of the previous work which had been performed. The second task

involved comparisons between program results and analytical solutions for

various problems. The third task was the verification and correction where

necessary of the finite element formulation for the eight-node quadrilateral

continuum element. The fourth task was a study of the effects on the problem

results which were caused by the corrected finite element formulation.

The results from this investigation showed that the current finite ele-

ment formulation for the eight-node quadrilateral continuum element produces

accurate results for problems which are analyzed using plane continuum ele-

ments. However, corrections to the finite element formulation for the analy-

ses of axisymmetric continua were necessary in order for accurate results to



vi

be obtained using the eight-node quadrilateral element. These corrections to

the SAMSON2 code were performed based in the results obtained in the verifi-

cation of the finite element formulation.P
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CHAPTER I

Introduction

The content of this report gives a detailed description of the

research which was performed during the investigation of the

higher-order isoparametric continuum finite elements 'five-node

triangle, six-node triangle, and eight-node quadrilateral) which are

available for use in the SAMSON2 code (1). SAMSON2 is a dynamic

nonlinear two-dimensional finite element computer code which was

developed at the Illinois Institute of Technology Research Institute

(IITRI) for the Air Force Weapons Laboratory (AFWL) located at Kirtland

AFB in Albuquerque, New Mexico. SAMSON2 is used to solve

structure-media interface (SMI) problems and problems which involve

large displacements, large strains and nonlinear material behaviors.

In analyses performed previously at the AFWL, it was found that the

solutions obtained by using the higher-order elements (HOE) were

anomalous. It was concluded that these anomalous results were caused by

inconsistencies in the HOE formulations. Hence, use of the finite

element library of elements for SAMSON2 by the AFWL is limited.

Therefore, the overall objective of this research was to rectify this

situation by modifying and correcting as necessary the HOE formulations

so that consistent and reliable results can be obtained. In addition,

by using the HOE, it was believed that solutions may be performed more

efficiently with improved accuracy and fewer elements compared to

solutions with the four-node quadrilateral continuum element now in use

by the AFWL.
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Three tasks were undertaken in order to attain the desired

objective of this research. The first task was to study previous work

performed with the use of the HOE. The reason for this study was to

acquire background information as to where possible problems may existI

in the HOE formulations. The second task was to perform finite element

analyses on various problems using the HOE available in the SAMSON2

code. The solutions of these problems were studied and compared with

analytical solutions in order to determine if the correct solutions were

obtained. The complexities and the types of the problems which were

selected were varied in order to fully test the HOE algorithms. The

third task was to investigate the developments of the HOE algorithms in

the code. These formulations were checked for validity and, if errors

were identified, corrections for these errors were postulated. The

eight-node quadrilateral formulation was the only one investigated ..

thoroughly since the eight-node quadrilateral is the most important HOE

to the AFWL for analysis purposes. The five- and six-node triangular

elements are essentially used only for transitions from eight-node

quadrilaterals to four-node quadrilaterals and were therefore considered

less important for this study.

After the completion of these three tasks, the results were

compiled and are discussed in this report. In addition, modifications

to the HOE formulation are suggested and detailed along with conclusions

based on these results.

'.P.*
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CHAPTER 2

Previous Investigations Associated With the Higher-Order Elements

The only continuum element currently being used by the AFWL is the

four-node quadrilateral (4NQ) because it is known to produce correct

solutions and because AFWL personnel are somewhat concerned about the

accuracy of the solutions produced by the HOE. Due to this concern, a

few investigations pertaining to the HOE have been undertaken.

The content of this chapter provides a discussion of two of the

prior examinations of the HOE that were reported to the author. These

investigations were studied in order to gain some insight into possible

problems associated with the HOE. Furthermore, the information obtained

from the studies was to be used as a starting point for the current

investigation.

The majority of the previous efforts toward investigating the HOE

has been performed by Dr. Howard L. Schreyer (2) at the New Mexico

Engineering Research Institute (NMERI) in Albuquerque, New Mexico.

Based on experiences involving the five-node and six-node triangular

(5NT, 6NT) continuum elements and the eight-node quadrilateral (8NQ)

continuum element, Schreyer concluded that use of these elements has

yielded anomalous results. In addition, the matrix that relates stress

to strain (the B-matrix) and the internal force vector have been

investigated at NMERI and at the AFWL and have been accepted as being

correct. Based on ths information, Schreyer's first approach in his

investigation was to analyze the one-dimensional wave propagation 5

problem shown in Appendix A (Case Al) of the SAMSON2 Users Manual (3)

S



using the 8NQ element available in the SAMSON2 code. By performing this

analysis he found that at the second time step in the solution the

right-side nodes of the first element did not move as predicted.
I Instead he found the corner nodes moved to the left (in the opposite

direction of the apidforce) while the isdnoemvdt th

:"right. He also found this displacement pattern did not correct with

time. Based on these findings he concluded that the shape functions

installed in SAMSON2 for the 8NQ may not be appropriate and that strains

might be produced by rigid body motions. He then checked the 8NO shape

functions for rigid body displacement and rotation and found no strains

were produced. After this check and with the results from the

one-dimensional wave propagation problem, he concluded there was a

different reason for the anomaly and began reviewing the internal force

computations and a modified system of shape functions. This last review

was never completed.

The only other reported work was conducted by Rod Galloway, an

employee at the AFWL. Doug $eemwann, the AFWL project representative for

the current investigation of the HOE, stated that Rod had inspected the

HOE formulation in SAMSON2 and found no obvious errors. Unfortunately,

Rod's work was not documented.

Doug Somnn also expressed some possible reasons why the HOE

formulation was not functioning properly based on his review of

Schreyer's work (4). He stated that tne element in question might have

been unstable due to the fact that the finite elemet discretization and

problem input were poorly defined. He also believed that approximations

used in the element formulation might be causing an instability. If the

9%%



problem were instability, he suggested three possible solu~tions: (11

more accurate formulation (assuming approximations are causing the

error), (2) more rigid specifications on how to 4se the elements and

(3) a better scheme for determining a stable time step.

-r.-
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CHAPTER 3

Finite Element Analyses

For this study, various problems were selected, modeled and

analyzed using the higher-order finite elements in the SAMSON2 computer

code (1). Most of the problems chosen had known analytical solutions so

that the results generated by SAMSON2 could be examined and evaluated

for errors.

There were two purposes for analyzing these problems. First, the

capabilities of the HOE were to be thoroughly explored. Second, these

analyses were to be used to discover possible errors in the HOE

formulation used in the SAMSON2 code. These two goals were obtained by

varying the complexities and the types of problems which were analyzed.

The 8NQ continuum element was given the main emphasis in the

analyses with only minimal use of the 5NT and 6NT continuum elements.

The 4NQ continuum element was also used for comparison purposes,

especially for problems without analytical solutions.

The problem configuration, loading, and material parameters are

provided in the succeeding sections along with a description of each

test problem. Pertinent results are also provided. Examples of input

data are provided in Appendix A for each problem.

3.1 One-Dimensional Wave Propagation

A uniform bar subjc,.ted to a dynamic axial load was chosen to test

the solution involving one-dimensional wave propagation which was

obtained with the use of the 8NQ. The bar problem was selected for

p,
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analysis because Dr. Schreyer (2) had used it in his previous

investigation of the higher-order elements, and, therefore, the results
and observations from his work could be verified. The one-dimensional

problem was also used in Appendix A of the SAMSON2 Users Manual (3) to

test the 4NQ.

The geometric configuration of the uniform bar can be seen in

Figure 3.1 along with some of the input parameters and the load used in

the analyses. The load which was used was a displacement function

applied to the left boundary of the bar. The nodes on the left and

right boundaries of the bar were fixed in the vertical (y) direction and

free in the horizontal (x) direction. The remainder of the input used

for the analyses is given in Appendix A. This input is identical to

that in Reference 3 for the 4NQ. The input required for the 8NQ for

this problem is slightly different than the input for the 4NQ. The

input for the 8NQ solution required an order of integration which was

chosen as 2.0 for this analysis. The bar problem was analyzed

dynamically (undamped) using an elastic plane strain material model.

The discretizations used in the analyses of the one-dimensional

wave problem were 16-4NQ elements with 27 nodes and 16-8NQ with 69 nodes

both divided into 2 rows of 8 elements. The 4NQ discretization was the

same as Case Al mentioned previously. Hence, the same number of 8NQ

elements were used since two rows of elements were desired with each

element having an aspect ratio (ratio of length of element to height) of

1.0. The same discretization was used for each ana'.sis since the

relative improvement in the results by increasing or decreasing the

number of elements was not important in this study.



U(t) 4, cm

a) Geometric Configuration

It = 0.25 sec (time step)

E = 1.0 dyne/cm 2  (modulus of elasticity)

0 z 1.0 dyne-sec 2/Cm 4  (mass density)

v = 0.0 (Poisson's ratio)

u - 0.0 (damping ratio)

b) Input Parameters

.

a is• 2e sit4

c) Applied Load

Figure 3.1 One-Dimensional Wave Propagation Problem
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The results generated by SAMSON2 for this wave propagation problem A

were compared with the results of the corresponding analytical solution

which can be found in either Appendix A of the SAMSON2 Users Manual

(with w = "c) or Clough and Penzien (5). The first observation made_

when comparing the 8NQ solution with the analytical solution was that W

Schreyer's statements were only partially true. The right-side corner

nodes of the first element did displace to the left (negative sense)

which is opposite to the applied force. But, contrary to what Schreyer

observed, these nodal displacements did change to the predicted

direction (in the direction of the applied force) in time (15 time

steps). A similar displacement pattern also occurred for other nodes.

The magnitudes of the initial negative displacements had minimal effects

on the final results as can be seen in Figure 3.2. It has been

concluded that these initial negative displacements were caused by

numerical dispersion and were inherent in the SNQ shape functions and

element formulation.

Additional results can be seen in Figures 3.3-3.7. The results for

the 4NQ and the analytical solution are identical to those shown in

Appenoix A of the SAMSON2 Users Manual. The BNQ results comp ire with

the analytical solution quite well, except for the oscillatory numerical

dispersion present. Only one displacement graph is given which is

representative of all the other displacement graphs. All displacement

graphs showed similar degrees of correlation between the 8NQ and the .

analytical solution results. The displacement and stress graphs have

the best agreement between the 8N0 solution and the analytical solution,

while the velocity graphs displayed a greater amount of dispersion.
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One :onclusion, based on the results generatec by SAMSON2, was that

the 8NQ element is satisfactory for use in the one-dimensional wave

prooagation problem for which a dynamic elastic solution was performed.

The only discr,?pancies in any of the results which should be noted

existed in the values for the deflections, velocities, and stresses in

.. the y-directio at points where the 4NQ solution and the 8NQ were
"J

compared. However, the magnitudes of these discrepancies were

insignificant.

Sore other conclusions that were obtained include: 1) the

formulation for the 8NQ has some inherent problems, and 2) the solution

obtained with the 4NQ was more efficient than that obtained with the

8NQ. The CPU time for the 4NQ solution was 7.20 secs. compared to 24.33

secs. for the 8NO.

3.2 Cantilever Beam

A problem involving a cantilever beam was solved in order to verify

the formulation for the 4NQ which appears in both the SAMSON2 Users

Manual and the STEALTH and SAMSON2 Verifications Manual (6). Hence,

this beam problem is used to test the performance of the 5NT, 6NT, and

8NQ elements in flexure when analyzed both statically and dynamically.

The geometric configuration of the cantilever beam can be seen in

Figure 3.8 along with a sample of the pertinent input data and loads

used in the analyses. The nodes on the left boundary were fixed in both

the x- and y-directions. The maximum stable :ime step for the NQ

discretization was obtained by trial and error (based on successive

unsuccessful computer executions) until a satisfactory solution was

9!
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N. A.

L = 16 ft

x

a) Geometric Configuration

t = 3.4E-5 sec (time step)

E = 4176.0 x 106 psf (modulus of elasticity)

= 16.0 lb-sec 2/ft 4  (mass density)

v - 0.0 (Poisson's ratio)

- 0.0 (damping ratio)

C1  = 1000 (mass proportional damping)

b) Input Parameters

100.0--

~dynamic

~static

0.0 5'

0.0 3.1E-3 1.0

t, sec

c) Applied Load

Figure 3.8 Cantilever Beam Problem.



obtained. Once chosen, the same time step was used for all of the

analyses. Mass proportional damping (C]) was used to obtain the static

solutions by dynamic relaxation techniques (3). The beam was subjected

to a static and a dynamic uniformly distributed pressure load. A short

rise time was used for the static analyses in order to reduce the time

required for convergence to the solution. The material law for a state

of biaxial elastic-plastic plane stress was used in the analyses with

Poisson's ratio equal to 0.0. An order of integration of 2.0 was chosen

for the 5NT, 6NT, and 8NQ. Examples of the remainder of the input data

used for the static analyses are contained in Appendix A. Only two

changes were made to this input data in order to execute the dynamic

analyses. The first change was the removal of the mass proportional

damping factor from the input. The second change was to eliminate the

short rise time in the static loading curve in order to make it an

instantaneous dynamic load.

The finite element discretizations used for the analyses of the

cantilever beam are shown in Figure 3.9a, b, c and d. The 4NQ grid was

based on the example problems in the SAMSON2 Users Manual. The element

dimensions were selected to be 1 ft x 1 ft in order to maintain an

aspect ratio equal to one as recommended in Reference 6. The 8NQ

discretization was selected such that one 8NQ element replaced four 4NQ

elements. This ratio of one 8NQ to four 4NQs was chosen so that the

same number of stress and strain calculations for the two discretization

would be performed. Hence, the efficiencies of the two solution schemes

could be compared. The aspect ratio for the 8NQ was also 1.0. The

discretizations for both the 5NT and 6NT contained 32 elements.
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a) 4NQ Elements
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b) uNQ Elements

Figure 3.9 Cantilever Beam Problem: Finite Element Discretizations.
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c) 5NT Elements
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d) 6NT Elements

Figure 3.9 Cantilever Beam Problem: Finite Element Discretizations
(Continued).
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Therefore, the number of 5NT and 6NT elements used in the analyses was

twice the number of 8NQ elements and one-half the number of 4NQ

elements. Fewer triangular elements (5NT and 6NT) were selected

compared to the number of 4NQ because the order of integration was

greater for the 5NT and 6NT than for the 4NQ. Once selected, the

discretizations used in the analyses were never changed.

The results of the static analyses for each of the four element
F

discretizations were compared to the corresponding analytical solutions.

These solutions were obtained with the use of basic principles of

mechanics (7). The maximum y-displacements (y max) obtained from the 0

computer analyses were compared to the theoretical value computed from

the following equation:

wL4  3 L2

Yma -"(3.1) •

where,

w = 200.0 lb/ft

L = 16.0 ft

E = 4176.0 x 106 psf

1 10.667 ft
4

A = 8.0 ft2

therefore,

Ymax -0.3908 x 10-  ft .

This value for the maximum displacement was computed at x = L and

included shear deformation effects. Table 3.1 shows the comparison

between the results generated by SAMSON2 for the maximum y-displacement

and the value computed using the analytical solution.
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Table 3.1 Comparison Between the Results Generated by SAMSON2 for
the Maximum Y-Displacement and the Corresponding
Analytical Solution.

Analytical Percent Difference
Element SAMSON2 4 Solution 4 Based On
Type Ymax(ft x 10" ) Ymax (ft x 10" ) Analytical Solution

4NQ -0.4067 (Node 51) -0.3908 4.07%

8NQ -0.3861 (Node 43) -0.3908 1.20*

5NT -0.3535 (Node 35) -0.3908 9.54%

6NT -0.3858 (Node 51) -0.3908 1.28%

The results for the 4NQ, 8NQ, and 6NT elements as seen from Table 3.1

differed only slightly when compared to the value obtained from the

analytical solution. The 5NT element results were not acceptable as

they varied from the analytical solution by more than 10%. A comparison

between the analytical and SAMSON2 solutions for normal stresses (ax

was also performed. The normal stress values used for comparison were

computed analytically using the following equation:

2a

My (100x 2 - 3200x + 25 ,600)y (3.2)
x x:

where,

M moment in the beam at any distance x (measured from the left
end of beam) 0.0 < x < 16.0,

y = distance from the neutral axis (N.A.) of the beam
-2.0 < y < 2.0, and

I moment of inertia of the cross-sectional area of the beam with
respect to the x-axis.

I.a-

U.,
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Table 3.2 shows some of the comparisons made between the computed ncrmal

stresses from Equation 3.2 to those computed using SAMSON2. As before,

the results for the 4NQ, 8NQ, and 6NT elements compared well, but

results for the 5NT did not. Normal stresses for other elements in the

meshes were compared, but are not shown here. Similar observations for

the stresses in these other elements were made witn regard to the four

different element discretization solutions.

The results from the dynamic analyses were also compared to the

corresponding analytical solution and are shown in Figures 3.10 to 3.17

and Tables 3.3 and 3.4. The analytical solution for the displacement

response at the free end of the cantilever beam was generated using

Equations 3.3, 3.4, and 3.5 (8). These equations are for the elementary

case and do not include shear distortion and rotary inertia or

axial-force effects. These three quantities were omitted to simplify

the solution.

V(x,t) = n(x) Yn(t) (3.3)
n=1

where,

V(x,t) = displacement response at any x for any time t,

On (x) = vibration shape at any x for mode n, and

Yn (t) - amplitude of vibration for mode n at any time t.

n (x) (cosh anx - cos a nX) - Cn (sinh a nX - sin a nX) (3.4)

where,

cos a nL + cosh anL
n sin a nL + sinh anL
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x distance from fixed ed, and

aI =1.875/L , a2  4.694/L , and a3  7.855/L.

P I
Yn(t) -- (n-n)(1 -cos Wnt) (3.5)

where,

Po = constant value for the uniformly distributed load (lb/ft),

= constant value for mass per unit length (lb-sec
2/ft2),

L

0/ ; n (x)dx
in = fL 02(x)dx ; 11 = 0.7830 , 12 = 0.4340 , 13 = 0.2589,

0 n

4
2 an El

- = frequency of vibration for mode n;
n

I = 256.18 2 = 1605.59 , w3 4,496.16, and

t = time in sec.

The first three modes of vibration (n=1,2,3) were used to predict the

displacement responses of the cantilever beam as shown in Figures 3.10

and 3.11. As shown in these figures, the analyses using the 4NQ, 8NQ,

and 6NT elements all overestimate the results from the analytical

solution. In addition, the response of these elements has a longer

period of vibration relative to that of the exact solution. The

opposite is true of the 5NT element response, i.e., the 5NT solution

underestimates displacements and has a shorter period of vibration. The

4NQ and the exact solution correspond to what is presented in

Reference 3. A numerical comparison of the average peak values for the

displacements for each curve in each figure can be seen in Table 3.3

Vol.

W'~
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Table 3.3 Comparison of Average Values of Peak Displacement and
Average Periods of Oscillation for the Curves Shown in
Figures 3.10 and 3.11.Pecn

Percent Difference
Average Value Difference When Compared to Average

of Peak Based on 2 Times Static Period of
Solution Displacement Analytical Displacement Oscillation

Type (ft x 0-4 Solution (0.7816 x 10- (sec)

Analytical -0.7403 ----- 0.0248

4NQ -0.8238 11.3% 5.4% 0.0259

8NQ -0.7793 5.3% 0.3% 0.0255

5NT -0.7134 3.6% 8.7% 0.0219

611T -0.7810 5.5% 0.1% 0.0254

along with the average periods of oscillation. In this table, the first

comparison was made between the average peak value for the exact curve

and each of the other four curves. These results were different than

those obtained from the static analyses in that the 5NT element solution

exhibited the best correlation to the analytical solution. It was

concluded that this good correlation resulted from neglecting shear

distortion in the analytical solution. Another comparison was performed

between a dynamic displacement response value equal to two times the

static displacement and the average peak values from each of the other

four curves. The conclusions from this comparison were similar to those

from the static solution, and, hence, the results from the 4NQ, BNQ, and

ENT element solutions are acceptable. The periods of vibration for

these three element types were also in good agreement with those of the
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exact solution. The 5NT element solution had the largest discrepancies

in columns 2 and 3 of Table 3.3, but the solution was acceptable based

on column I in which shear distortion was neglected. The dynamic normal

stress (a responses generated for the four element types were also

studied. The following equation was used to compute the stress response

values that were used to compare with the output from the analyses using

the four different element types:

Ox(x,t) z Ey "(x) Yn(t) (3.6)n 1l

where,

[= a [(cosh anx + cos anX) - C (sinh a x + sin a x)].
n. n n co n~ nn

Curves showing the variation in the maximum stress and the stress at

midspan (same locations and elements as in the static analyses) for each

element type are given in Figures 3.12 to 3.17. The results are similar

to those from the static analyses and the displacement response

comparisons. The 4NQ, 8NQ, and 6NT element solutions agree well with

the exact solution, but the 5NT solution does not agree with the

analytical solution as well. Table 3.4 shows the comparison between the

peak stress values for each element type relative to the exact solution.

The 6NT and 8NQ higher-order elements agree with the exact solution the

best. The 4NQ element solution is acceptable, but the 5NT element gives

the worst correlation to the exact solution.

% % ? , *% -. -, * -.- -~- ~ - w --, -w 'v '.. * ..... 4
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The execution times (CPU times) were recorded for each analysis of

the cantilever beam in addition to the results presented previously.

These CPU times were used to determine the relative efficiencies of the

solutions using the four element types. Table 3.5 shows a

representative sample of the CPU times obtained from the analyses. As 1W

shown, the 4NQ element solution was two to three times more efficient F1
1%

than the three HOE solutions. These significant increases in CPU time

for the HOE solutions as compared to the 4NQ solution were attributed to

the following: (1) more terms are included for each calculation

involving the shape functions for the HOE due to the increased number of

nodes per element, (2) more subroutines are used in the HOE solution

schemes, and (3) the 5NT and 6NT element solutions involve twice as many

stress calculations as the 4NQ element solution. It should be noted

that these three conditions more than offset the time saved by the

reduction in the number of the nodes resulting from the use of the HOE.

Based on the third condition, if the same number of stress calculations

were performed, an increase in CPU time of between 50 and 75 percent

would be expected for the 5NT and 6NT element solutions when compared to

the 4NQ solution.

Some-general conclusions which are based on the results presented

in the previous paragraphs, are as follows. The 6NT and 8NQ

higher-order elements and the 4NQ element give correct solutions for

both static and dynamic analyses for a problem involving flexural

response with an elastic plane stress material law. Solutions involving%

these two HOE showed more accurate results with fewer nodes and elements

than the 4NQ element solutions, but were much less efficient (more



Table 3.5 CP .~Time~y- C fo the Four Element Tp Used~.r~r~- in..'-

t

Table 2.5 CPU Time Comparisons for the Four Element Types Used in
the Analyses of the Cantilever Beam.

Element Type CPU Time Percent Difference Based
(secs) on 4NQ Solution

4NQ 105.0 ---

8N0 224.1 113.4%

5NT 317.0 201.9%

6NT 339.8 223.6%

expensive). The decrease in the accuracy of the 4NQ element solution is

due to the under-integration inherent in the formulation of this element

as it exists in the SAMSON2 code (3). The 5NT element results varied
greatly with respect to results from the other three elements for both

the static and dynamic cases, except for the maximum dynamic displace-

ment which compared well to results from an analytical solution which
'.

neglects the effects of shear deformation. These poor results were

believed to be due to the fact that the 5NT element is not an entirely

linear strain triangle because it only has two quadratic displacement

sides. This fact could cause the 5NT element to behave in a manner

similar to a constant strain triangle in that a soft response might

occur which could only be corrected by increasing the number of elements

used in the analysis (3). Another possible cause of the poor results

exhibited by the 5NT element was the position of the midside nodes in

the 5NT elements. For the analyses which were performed, the midside

nodes were positioned on the hypotenuse and on one side of the triangle.

A different discretization was devised with the two midside nodes being

. wnsS5 V#~S ~ ~ %V~.~ ~.



on the two sides of the triangle and not on the hypotenuse. A solution

using this different discretization involving the nodes on the two sides

was attempted, but no output was obtained because of an incompatibility

(zero area was computed by the program) between the input and the

corresponding formulation of the 5NT element which could not be

resolved. A final note on the 5NQ element is that this element did

produce some acceptable results when compared to the analytical

solution. Therefore, it might be possible to make use of this element

for the transition from an 8NQ element to a 4NQ element as it was

intended.

k

3.3 Soil-Structure Interaction

Based on the results for the HOE solutions from the previous two

sections, especially the results for the 8NQ element, a more complex

problem was chosen in order to further check the performance of the 8NQ

element. A problem involving soil-structure interaction, the type of

problem for which SAMSON2 was designed, was chosen. For this problem,

no analytical solution is available and all of the 8NQ results were

compared to those obtained by using the 4NQ. Although this comparison

may not appear to be very practical, it gave a qualitative measure of

the performance of the 8NQ element for this problem. The 4NQ has been

shown by personnel at the AFWL to be reliable and accurate for similar

soil-structure interaction problems when compared to actual test data.

The configuration uf the soil-structure problem is shown in

Figure 3.18a, b and c along with some input data and the primary load

'

*% ~ ~ r%~.i. '~* -., ,. ~-. I *' ~ * '
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y
/-Axis of Symnetry w(t)

Fiber Reinforces Concrete Cylinder

3 t
3 Structure-Media Interface (Slideline)

ii 6 6ft

-- Yuma Soil

x
I ft 8 ft1

a) Problem Configuration

At x 1.OE-6 sec (time step)

Pc = .2516E-3 lb-sec2/in4  (mass density of concrete)

= - .173E-3 lb-sec /in4  (mass density of soil)

E = .42E7 psi (modulus of elasticity of
C concrete)

E .158E7 psi (modulus of elasticity of soil)

v = 0.24 (Poisson's ratio for concrete)

v = 0.38 (Poisson's ratio for soil)

= 0.01 (damping ratio)

b) input Parameters

Figure 3.18 Soil-Structure Interaction Problem.
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(nuclear airblast) used in the analyses. This problem is a scaled

version of one which was analyzed and experimentally tested by the AFWL.
'.

The structure is a fiber reinforced concrete cylinder surrounded by Yuma

soil separated by a structure-media interface. The input data

pertaining to the two materials were obtained from AFWL material models.

Additional input data are contained in Appendix A. Also, the slideline

data are from the AFWL bilinear failure surface model for Yuma soil and

fiber reinforced concrete. An integration order of 2.0 was used in the

8NQ analyses. The load curve was obtained from an actual test performed

by the AFWL and was estimated for use in the analyses with the use of

the NMERI Speicher/Brode Nuclear Airblast Curve algorithm based on a

peak pressure of 50 ksi and a yield of 225 kt.

In the analysis of the soil-structure problem, the nodes on the

bottom boundary of the soil field were not allowed to displace in the

y-direction, while those on the right boundary could not displace in the

x-direction. The lower right corner node was fixed in both the x- and

y-directions. The problem was analyzed dynamically using an

axisymmetric material law developed by the AFWL. The law is called the

AFWL "engineering" model and was primarily designed to model soil

behavior.- It is defined by a piecewise linear hydrostat (a plot of

hydrostatic pressure vs. volumetric strain) for which the critical

identifying points are given as part of the input data (3). Strain

softening and dilation cannot be modeled by the AFWL "engineering" law.

Therefore, the hydrostat curve must be monotonically increasing (strain

hardening) (6). It is important to note that the soil-structure problem

should be analyzed in three dimensions in order to obtain the most

-* -t-- 0:'* ~ 0 . . . . . .
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accurate results. However, SAMSON2 is a two-dimensional code, and,

therefore, this problem was analyzed axisymmetrically with SAMSON2.

The soil-structure interaction problem was discretized separately

into 4NQ and 8NQ elements for the analyses. The initial finite element

mesh for the 4NQ consisted of 216 - 6 in. x 6 in. elements (204 soil

elements, 12 concrete elements) and the initial mesh for the 8NQ

consisted of 54 - 12 in. x 12 in. elements (51 soil elements, 3 concrete W

elements). These meshes contained relatively large elements (a coarse

discretization) in order to keep the CPU times as short as possible,

especially for the 8NQ solutions, and because only qualitative results
were desired for comparison purposes. The 8NQ discretization was chosen

such that one 8NQ element replaced four 4NQ elements. Therefore, a CPU

time comparison could be made as was done for the cantilever beam

problem.
,,.%

A qualitative comparison was performed between the two solutions.

In making this comparison, the principal values considered were the

displacements and accelerations in the y-direction for all the nodes in

the concrete cylinder as well as for a representative number of nodes in

the soil. Also, the stresses in the y-direction (a ) were considered
y

important for all elements in the concrete and for a typical number of

soil elements. The values for these three output parameters were

studied, both qualitatively with regard to their variation in response I

with time and numerically.

The comparisons for the initial (coarse) meshes rendered very few

acceptable results. In general, the results obtained from the 8NO

element solution using the initial coarse mesh in the concrete
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(Figure 3.19b) exhibited a significant amount of variation. For

instance, the upper right node in the structural mesh (node 202) had a

y-displacement value three times that of the other two adjacent nodes

(nodes 200 and 201) at the end of the tenth time step (the first time

step for which output was obtained). This variation was thought to be

due to one of three conditions: (1) the mesh which was used was too

coarse, (2) instability existed in the solution, or (3) the slideline

calculations for the 8NQ element were in error. The 4NQ element

solution, in contrast to the 8NQ solution, had very consistent results. .

In fact, the top three nodes in the coarse 4NQ finite element mesh of

the concrete cylinder (nodes 242, 249, and 256 in Figure 3.19a) had

equal values for both the y-displacements and y-accelerations at the end

of the tenth time step. The stresses for the 4NQ solution were also

consistent, while those for the 8NQ were erratic due to the unequal

y-displacements and y-accelerations of the upper nodes. A comparison of

the values for the y-displacements, y-accelerations, and stresses in the

y-direction (a ) was performed at the end of the tenth time step. The
y

y-displacement and y-acceleration values for nodes 242 and 249 in the

4NQ mesh were twice those of nodes 200 and 201 in the 8NQ mesh, while

the values for node 256 in the 4NQ mesh were significantly less than

those for node 202 in the 8NQ mesh. A comparison of stresses between

the top element in the 8NQ mesh (element 54) and the top four elements

in the 4NQ mesh (elements 209, 210, 215 and 216) showed an acceptable

correlation for only one stress value. The stress at the upper right

integration point of element 54 was within 121 of the stress in element

216. The normal stress (ox) also compared well at this location. The

--.
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shearing stresses in the 8NQ solution at the tenth time step were

significantly higher than those from the 4NQ solution. These large

differences in the shearing stresses as well as for the other stresses

resulted from the large numerical discrepancies in the y-displacements

at the top of the 8NQ mesh. The other nodes in the 8NQ mesh behaved

much the same as the top row of nodes, but exhibited one additional

trend which was previously discovered in the one-dimensional wave

propagation problem. Many of the nodes located below the second row of

nodes in the 8NQ mesh (nodes 198 and 199) displaced upward (positive

direction) which is opposite to the direction of the applied blast load,

while the corresponding nodes in the 4NQ all displaced downward

(negative direction).

The 8NQ solution was corrected with time as in the wave propagation

problem, but only to a certain extent. Most of the nodes in the

structure did reverse directions by the end of 400 time steps. The

y-displacement values for nodes 200, 201 and 202 did tend toward the

same value, but the y-displacement for node 202 was still greater. The

y-displacements for the nodes on the right vertical boundary (slideline

nodes 202, 199, 197, 194, 102, 189, and 187) were, in most instances,

greater than the y-displacements for the corresponding nodes to the left

of the slideline. Stress values (a ) at similar levels within the
y

structural mesh were approximately equal (consistent at these levels) at

certain times during the solution, but this consistency was not observed

on a regular basis. Oscillations (wave propagations) were apparent

throughout the solution as was shown in the plots of y-accelerations,

stresses in the y-direction (a ), and y-displacements in the SAMSON2
y

NXS
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output. Results from the soil elements were consistent for the entire

time of solution.

Quantitative comparisons of results between the 4NQ solution
%JW

(solution remained consistent with the nodes being almost equal for each

individual row, but those on the slideline displaced slightly more than

the others) and the 8NQ solution were performed at every tenth time step

in addition to a qualitative overall comparison. Some numerical

comparisons showed acceptable results, while the majority of the results

compared poorly. The y-displacements for the top two rows of nodes in

the soil were within 8% of each other at t = .2E-3 (200 time steps), but

deviated by up to 37% at t .4E-3 (400 time steps), respectively. The

best soil stress correlations differed by 17%. Stresses in the concrete

cylinder, particularly matched well at certain times, but varied

with the propagations of the waves through the structures. Therefore,

this correlation of stresses might have been by coincidence more than .

anything else. The large shear stress discrepancies discovered at the .

tenth time step were significantly reduced with time. Qualitatively,

both solutions displayed the wave propagation phenomenon throughout the

structure, but the 8NQ solution was trailing that of the 4NQ as if the

wave speeds in the two were quite different. The plots of the

y-displacements in the SAMSON2 output for the 4NQ solution showed the

wave propagation interaction more than those for the 8NQ solution. In

general, the nodal displacements for the corresponding rows are

qualitatively similar such that the displacements are ;arger for nodes

closer to the slideline. The values for the nodal y-displacements from

the 4NQ solution are greater than those from the 8NQ solution, except in

16
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the top row, even though at certain times there was good agreement

between corresponding values.

Many variations in the solutions were attempted in order to improve

the results stated in the previous paragraphs for the initial 4NQ and

8NQ coarse discretizations. The variations to the input were as

follows:

(1) energy error output was requested for the two solutions

to determine if unstable conditions were present,

(2) the slave nodes were reordered in the slideline in an

attempt to eliminate the erratic behavior present in the

8NQ solution,

(3) reduced loadings were applied to reduce the possitility

of instabilities occurring in the solution,

(4) finer mesh discretizations of the concrete cylind~er were

used in the 4NQ and 8NQ solutions, and

(5) the order of integration was increased to 3.0 for the 8NQ

solution.

The results from requesting the energy error output are shown in

Figures 3.20 and 3.21. These figures, if assumed reliable based on the

findings of Berglund and Rudeen in Reference 6, show that both solutions

are unstable because the energy error exceeds 1% (1, 9). In

Reference 6, it was pointed out that the energy terms calculated in

SAMSON2 are either in error or incomplete and need to be corrected. In

the current study, assuming the results from the Figures 3.20 and 3.21

to be reliable, the possibility of excessive distortion was investigated

in order to determine if the 8NQ formulation was still valid (11). No

.
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apparent excessive distortion was located during the current study.

Upon investigating the possibility of excessive distortion, a study of

time step sizes versus changes in the solutions was performed. The time

step size was halved, and then halved again. No apparent changes

occurred in either of these two solutions. Therefore, the solutions

.p. were considered to be stable, especially since Figures 3.20 and 3.21

show the 4NQ solution to be more unstable than that for the 8NQ for the

same time step size. It was found in the execution of the cantilever

beam problem that the stable time step for the 8NQ solution was less

than that which could have been used in the 4NQ solution. An additional

note to this information is that the curves for each of the energy

components (kinetic, internal, and external work) displayed the same

patterns.

The second variation in the input that was performed in an attempt

to improve the 8NQ results when compared to those obtained for the 4NQ,

was a change to the order of the slideline nodes. This change was

performed due to a phone conversation with personnel of the AFWL (4).

The actual change was just a reversal of the order of the input for the

slave nodes. Instead of inputting the nodes from top to bottom, they

were input from bottom to top so that the first slave node was adjacent

to the last master node on the slideline. The result of this change was

S very minor and affected mostly the lower nodes of the structural meshes.

No relative improvement in results was obtained.

The third variation was the application of a -educed load in order

s to lessen the chance of instabilities occurring as well as to make the

solution perform more elastically with little or no plastic flow. The
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first load variation was the blast load reduced by a factor of 500 (peak

pres sure of 100 ps i i n pl ace of 50,000 ps i) . The results obtained for

the initial structural meshes with this applied load were no better than

those for the originally applied airblast load. The same trends in the

nodal displacements existed in these solutions as in the previous ones.

Another solution was executed with the 100 psi load reduced to a peak

value of 1 psi and twice the run time used in each of the previous

solutions. The solution time was doubled in order to determine if the

8NQ solution would converge further. The results from the solution

using the 1 psi load and the double run time compared well with those

obtained with the use of the 100 psi load, such that at time t = .4E-3

(the total run time for the 100 psi solution) all results differed by a

factor of 100 which was the same ratio between the two applied loads.

These results showed that the two solutions which were obtained with the

* . use of the reduced loads were both stable and in the elastic range as

was desired in these analyses. The remainder of the results (from t

.4E-3 to .8E-3) for the I psi peak load revealed the following:

(1) The nodes on the slideline in the two solutions no longer

had the largest values for the y-displacement, but

instead the displacements got larger in proceeding toward

the left side of the structural mesh along a row. This

behavior was opposite to that found for previous

solutions. The slideline nodes acted as if they had

reached a limiting state. This new displacement pattern

was found throughout the entire 4NQ mesh and in the top

two-thirds of the 8NQ mesh.
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(2) Some better comparisons were obtained between the two

solutions for values of nodal displacements and elemental

stresses. But, as before, these good results were only

obtained for particular locations and not throughout the

structural meshes.

(3) The 8NQ results were much more consistent and reacted

more like the 4NQ solution. All y-displacements for the

8NQ structural mesh (coarse) were downward after 680 time

steps (t = .68E-3).

The fourth variation undertaken to further improve the results

between the 4NQ and 8NQ solutions was new discretizations of the

structural meshes using more nodes and elements. These new

discretizations were done in order to determine if the element sizes in

the two initial structural meshes caused the discrepancies in the

results shown previously. The first new discretization involved an

increase in the number of nodes and elements in the 8NQ structural mesh

(the finer mesh in Figure 3.22b). An analysis using this finer mesh and

the 1.0 psi peak load was executed. The outcome from this analysis was

much more consistent (displacements [stresses] within the structure were
Ld.a

approximately equal at similar levels in the mesh) compared to prior

analyses. Qualitatively, this solution exhibited the same trends when

compared to the 4NQ solution for the 1.0 psi load performed previously.

When these two solutions were compared numerically at the same time

step, the values for the y-displacements for the 8NQ solution were an

average of 20% less than those for the 4NQ solution (stress values were

correspondingly less also). Table 3.6 shows values for the

..- -. ... , - . - - - . . . . . , A
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Table 3.6 Comparison of Y-Displacements Between the 8NQ Solution
(Finer Mesh) and the 4NQ Solution for a 1.0 psi Peak
Load.

Percent
Original 8NQ 4NQ Difference

Node Location Y-Displacement Y-Displacement Compared to
3 x1 3  4NQ atx-coordinate y-coordinate t=.8x10 " sec t=.Sxl0" sec -3

(in) (in) (in x 10-4) (in x 10-4 ) t=.8x10 sec

0.0 72.0 -.1927 -.2112 8.8%
3.0 72.0 -.1851 --- ---
6.0 72.0 -.1749 -.2009 12.9%
9.0 72.0 -.1633 ......
12.0 72.0 -. 1678 -.1972 14.9%
0.0 66.0 -.1774 -.2073 14.4%
6.0 66.0 -.1699 -.1961 13.4%
12.0 66.0 -.1587 -.1912 17.0%
0.0 60.0 -.1618 -.1996 18.9%
3.0 60.0 -.1626 ......
6.0 60.0 -.1593 -.1878 15.2%
9.0 60.0 -.1550 ......
12.0 60.0 -.1463 -.1831 20.1%
0.0 54.0 -.1498 -.1949 23.1%
6.0 54.0 -.1421 -.1785 20.4%
12.0 54.0 -.1304 -.1710 23.7%
0.0 48.0 -.1343 -.1898 29.2%
3.0 48.0 -.1264 ......
6.0 48.0 -.1218 -.1711 28.8%
9.0 48.0 -.1183 ......
12.0 48.0 -.1161 -.1612 28.0%
0.0 42.0 -.0944 -.1788 47.2%
6.0 42.0 -.1095 -.1639 33.2%
12.0 42.0 -.1162 -.1563 25.7%

y-displacements obtained from the two solutions at time t = .8 x 10-3

sec (the last time step). A comparison of the two sets of values from

the two solutions resulted in a percent difference ranging between 9%

and 47% (average was approximately 20%). The reason for this

significant difference between the two solutions for such a small

loading was not readily apparent to the author at that point in time.

" !1



56

However, the reason was determined later in this investigation. Further

refinements were made to both the 4NQ anc 8NQ structural meshes (the

finer 4NQ mesh and the finest 8NQ mesh in Figure 3.22). These meshes

were then used in the analyses. The results from these new analyses

still produced a 20% difference between the two solutions. The two

finest meshes were then subjected to the initially applied blast load

(50 ksi peak pressure) to determine if a 20% difference between the two

solutions would still occur. The comparison of the results from these

two executions yielded a 15%/0 difference between the same values of

y-displacement. It should be noted that the stress values could not be

compa red at similar time steps due to the differences in the wave speeds

in the two solutions. One further observation involving only the 8NQ

solution was that the results were much more consistent compared to

previous analyses using the blast loading. 5

The fifth variation used in the analyses of the 8NQ solution was an

increase in the order of integration from 2.0 to 3.0. The integration

order for the 8NQ was increased in an effort to further reduce the

differences in values between the 4NQ and BNQ element solutions. The

results occurring from this change showed no relative improvement in the

comparison between the two solutions.

Three conclusions and one related recommendation were made based on

the results of the analyses for the soil-structure interaction problem

using the 8NQ element. The first conclusion was that the 8NQ solutions

(those obtained using the two refined meshes in Figure 3.22b) produced

consistent results for the different analyses of a soil-structure

interaction problem involving an applied blast load and analyzedIo



9'
57 p.

;,

axisymmetrically using the AFWL "engineering" model. The results from

these solutions have not, as yet, been shown to be reliable. In fact,

these solutions were significantly different (15-20) when compared to

those obtained with the use of the 4NQ element. These differences must

be interpreted carefully however, because the true reliability of the .4

8NQ solution has not been verified since no analytical solutions or test

data were available for comparison. The second conclusion was that the

energy formulation was in error. The third conclusion was that the 8NQ

element solutions were definitely obtained less efficiently than

analyses obtained using the 4NQ element. The 8NQ element solutions

required on the average 75% more execution time than those solutions
using the 4NQ elements. The reasons for this CPU time difference were

explained in the discussion for the cantilever beam. The one

recommendation was that the 8NQ element should be used by personnel at

the AFWL in an analysis of a soil-structure interaction problem for

which test data are available. The comparison between the test data and r
.

this 8NQ element solution would give a measure of the reliability of the

8NQ solution. However, if the 8NQ is still found to be unreliable it

may be due to one of the following: (1) an error in the 8NQ

axisymmetric formulation, (2) an incorrect interaction between the

slideline and 8NQ formulations, or (3) an incorrect definition of

plastic flow in the 8NQ formulation. It should be noted that the

version of SAMSON2 used in the analyses in this study does not include

any updates in the slideline routines which have been formulated by the

AFWL in the last couple years.

I"
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3.4 Additional Analyses

Two more problems were analyzed using the 8NQ higher-order element

(a 4NQ analysis was also performed for each) for which analytical

solutions exist. The first problem was a static analysis (dynamic

relaxation) of a fixed-end beam. This beam had the same dimensions and

discretization as the cantilever beam discussed earlier in this

investigation and was subjected to a concentrated load at the center of

the beam. The beam was analyzed using a biaxial elastic-perfectly

plastic plane stress (Poisson's ratio = 0.0) material law. This problem

was chosen for analysis in order to further determine the reliability of

a 8NQ solution after plastic flow had been initiated. The sec Id

problem was an axisymmetric analysis involving one-dimensional wave

propagation. The orientation of the geometric configuration for the

previous one-dimensional wave-propagation problem was rotated 900 for

use in the current axisymmetric analysis. The same element

discretizations (nodes renumbered) and material law were used for this

axisymmetric analysis. The same displacement function versus time was

applied to the lower nodes for this axisymmetric configuration. The

boundary conditions were changed to fixed in the x-direction and free in

the y-direction. This problem was selected in order to further test the 4

reliability of a dynamic axisymmetric 8NQ solution. The input data used ,5

in the analyses of these two problems are in Appendix A.

The results from the 8NQ element analysis of the fixed-end beam

compared very well, both elastically and plastically, t- the analytical

solutions. The maximum y-displacement and normal stress values obtained

from the elastic 8NQ solution differed by 0.5% and 1.5%, respectively,

, . . . , - o .- -, _ .
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when compared to values obtained from calculations involving

Equations 3.7 and 3.8.

PL3  1.2 PLYmax 192EI +  (3.7)

X

where,

P = peak value of the applied concentrated load (lbs),

L = length of the beam (ft),

E = modulus of elasticity for the beam (psf),

I = moment of inertia about the x-axis (ft4),

G = shearing modulus (psf), and

A = cross-sectional area of the beam (ft
2)

1A.

M y 4Px PL (.8x T_ _F-
x X

where,

M moment at any distance x L from the left side of the
x beam (ft-lb), 

x distance to the right of the left side of the beam (ft),
and

y distance above (+) or below (-I the neutral axis of the
beam (ft).

Other values for other locations within the beam also compared well.

The elastic-perfectly plastic 8NQ solution was not compared

directly to analytical solution values, but instead was compared

oualitatively to corresponding theoretical concepts and to the 4NQ

solution through observation of the stress patterns in the 8NQ solutions

after the yield point value had been reached. The 4NQ and 8NQ solutions
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both exhibited local yielding for elements in their respective meshes

after the yield point value had been exceeded. The stress (c)

distributions for particular cross-sections of the beam were plotted

both before and after yielding and the results were compatible with

vmechanics of materials principles (7, 11). The distributions for the

elastic cross-sections varied linearly, while those for the

elastic-perfectly plastic solutions were constant for the top and bottom

portions of the beam with connecting linear variations. Another

observation made from the results was that redistribution in elemental

stresses occurred as a result of local yielding. The elements nearest

to the fixed-ends and nearest to the center of the beam had very small

increases in stress values after the initial elastic load was increased,

while the other elements had much larger stress increases. This

difference between the relative increases in stress values between the

different elements was compatible with plasticity theory. Two other

observations were made: (1) the y-displacewnents for the nodes at the

center of the beam for both the 4NQ and 8NQ solutions were much larger

after yielding had occurred as opposed to the elastic displacements, and

(2) the output values (displacements and stresses) were larger in the

8NQ solution compared to those of the 4NQ due to the fact that the 8NQ

solution predicts higher elastic stress values because of the difference

in the order of integration between the 4NQ and 8NQ elements.

The results for the axisynunetric analysis of a wave propagation

problem were compared numerically and qualitatively to the previous

solutions (Section 3.1). Output values obtained from the current 4NQ

solution (displacements, velocities, and stresses in the y-direction)
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were identical to the corresponding values from the previous 4NQ

analysis of the one-dimensional wave propagation problem (displacements,

velocities, and stresses in the y-direction). However, similar values

obtained from the current axisymmetric 8NQ solution did not compare well

with those from either the current axisymmetric 4NQ solution or the

previous one-dimensional solution. Figures 3.23, 3.24, and 3.25 show

representative examples of the deviations between the 4NQ and 8NQ

axisymmetric solutions. Similar deviations occurred between the two

solutions for other nodal y-displacement and y-velocity values as well

as for other elemental stress (o y) values. In comparing

Figures 3.23-3.25 to similar figures in Section 3.1, it was apparent

that the 8NQ solution lagged the 4NQ solution in the axisymmetrical

analyses, particularly in the displacement and stress plots. The

results from comparing these two axisymmetric solutions numerically at

the same time step were that the 8NQ values were around 15% less than

those from the 4NQ solution.

Two conclusions were made based on these results. The first

conclusion was that the 8NQ performed properly when used in a static

elastic-perfectly plastic plane stress solution. Strain hardening was

not attempted since the elastic-perfectly plastic solution results were

so good. The second conclusion was that an error appears to be present

in the 8NQ axisymmetric formulation. This conclusion was made on the

basis of results obtained from the current wave propagation analyses and

the axisymmetric analyses oi Lhe soil-structure interaction problem.

I
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3.5 Summary of Results and Conclusions

, Five different problems of various complexities were analyzed using

.the current 8NQ higher-order element formulation in the SAMSON2 code.

The 5NT and 6NT higher-order element formulations were also tested with

we

'.. a cantilever beam solution.

5The results from the analyses using the 5NT, 6NT and 8N

higher-order elements were quite good overall. The 8NQ element results

compared exceptionally well with analytical solution values for the

dynamic elastic analysis of a one-dimensional wave propagation problem,

the static and dynamic elastic analyses of a cantilever beam problem,

and the static elastic-perfectly plastic analysis of a fixed-end beam

problem. Discrepancies in the 8NQ results were found in the dynamic

axisymmetric elastic-plastic analysis of the complex soil-structure

interaction problem and the dynamic axisymmetric elastic analysis of a

one-dimensional wave propagation problem. The 6NT element results

compared very well with values obtained from the analytical solutions

for both the static and dynamic elastic analyses of the cantilever beam

problem. The 5NT element results compared poorly, in general, to

analytical solution values for the cantilever beam analyses. However,

some 5NT values did compare well. In particular, the maximum value for

the y-displacement obtained for the 5NT from the dynamic analysis of the

cantilever beam compared the best (compared to the values from the 6NT

and 8NQ analyses) to the value calculated for an analytical solution

which neglected shear ;Lformation, axial, and rotary inertia effects.

Further results showed that the solutions involving the higher-order

-., _ -.% ,"%-, %. •.
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elements were less efficient compared to corresponding 4NQ element

solutions.

Some difficulties were encountered prior to and during the

execution of the higher-order element analyses. The following is a list

-, of some of these difficulties:

(1) The mesh generation routine in SAMSON2 was not formulated

so that the meshes used in the higher-order element

solutions could be generated easily. For instance, the

8NQ elements can only be generated perpendicular to the

direction in which the nodes were generated due to the

fact that these elements have different node increments

between corner nodes and midside nodes. Another example,

was that the 5NT element mesh used in the cantilever beam

analyses could not be generated for reasons similar to

-~ those stated for the 8NQ element.

(2) The placement of the mldside nodes was critical in order

to obtain a solution using the 5NT elements. It was

mentioned previously in Section 3.2 that an attempt was

made to improve a 5NT solution by changing the locations

of the midside nodes. The elemental nodes wers input

according to Reference 3 for these rearranged nodes, but

negative areas were calculated for the elements. This

calculation occurred during the nodal mass allocation,

and therefore was not affected by "e time step size. A

* solution was never obtained for the mesh containing the

P. reordered nodes.
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(3) In, the execution phase of each analysis, it was observed

that the higher-order element analyses required a smaller

time step size as compared to the 4NC element analyses.

The time step value used for the cantilever beam analyses

was set equal to the maximum value required to obtain a

stable solution using the 8NQ as determined by a trial

and error procedure. The stable time step for the 4NQ

solution was larger even though the 4NQ mesh used in the

analyses was significantly finer.

A summnary of the conclusions discussed earlier in this chapter is

presented here. The higher-order element (5NT, 6NT, and 8NQ)

formulation for the calculation of strain appears to be correct for both

static and dynamic plane analyses. The 8NQ elemient formulation for the

internal force calculations (stress calculations are part of the

internal force calculations) was shown to be functioning properly for

static analyses using the biaxial elastic-plastic plane stress material

law and for dynamic analyses using the biaxial elastic plane strain and

plane stress material laws. Internal force calculations were also

executed correctly for the 6NT element in static and dynamic analyses

using the biaxial elastic plane stress material law. These calculations

were also correct for the 5NT element assuming that the 5NT element

cantilever beam solution could have been improved by increasing the

number of elements in the mesh. The 8N0 axisy1metric formulation was

found to be incorrect for dynamic analyses usirg the AFWL "engineering"

model and the elastic plane strain material laws. Three potential



additional errors were discovered in the SAMSON2 finite element

formulation and are as follows:

(1) The energy error formulation is incorrect in its present

state as was shown in the analysis of the soil

structure-interaction problem.

(2) The slideline calculations for the 8NQ analysis appeared

to be quite different when compared to those obtained for

the 4NQ analyses.

(3) The AFWL "engineering" model might also be in error for

the 8NQ formulation when used for elastic-plastic

analyses.
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CHAPTER 4

Verification of the SAMSON2 Finite Element Formulation for the

'Eiaht-Node Quadrilateral Isoparametric Continuum Element

-The contents of this chapter dealing with the verification of the

finite element formulation for the 8NQ isopa'ametric continuum element

are separated into three main sections. The first section provides the

necessary background information needed to better understand the

capabilities of the SAMSON2 code. This information was also important

in the code verification. The second section contains a synopsis of the

equations involved in the 8NQ finite element formulation currently in

the SAMSON2 code. Each equation presented was compared with information

existing in finite element texts, journal articles, and other sources in

order to verify the formulation (1, 5, 7, 8, 9, 11-18). Any

disagreements obtained from these comparisons are pointed out and the

conflicting equations from the reference materials are presented.

Solution flow charts and some discussion of the equations are also

introduced in this section. The third section in this chapter includes

a summary of all of the errors found during the verification of the BNQ

finite element formulation.

4.1 Background Information

The SAMSON2 code is a dynamic nonlinear two-dimensional

structue-media interaction computer code (1) which uses an explicit

central difference finite element solution scheme. Explicit integration

is only conditionally stable. Therefore, an accurate solution can only
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be obtained by selecting a small time step At. An energy balance is

performed at the end of each time step to check if the solution is

stable (energy error less than 1.0%). A diagonal lumped mass matrix is

used in accordance with the explicit integration scheme so that no

solution of any simultaneous equations is required in advancing a time

step. A stiffness matrix is never computed in an explicit time

integration scheme due to the fact that solutions of simultaneous

equations are never performed.

The SAMSON2 code was designed specifically for analyses of large

displacements, large strain problems involving nonlinear material

behavior and structure-media interface (SMI) problems. The stress and ,

strain calculations are performed in the analyses of these nonlinear

type problems with the use of the Cauchy stress and velocity strain

(rate of deformation) tensors. The evaluation of stresses is performed

in a corotational coordinate system which rotates coincident with the

rotation of a quadrature point in an element. Therefore, a Jaumann type

correction is not needed to maintain objectivity in the solution. The x

and y nodal coordinates used in the analyses are the spatial Eulerian

coordinates which are consistent with the velocity strain tensor.

Gaussian quadrature is used in the numerical integration of the finite

element equations for the stress and strain tensors for the 8NQ

isoparametric continuum element.

Many other features are present in SAMSON2 that are linked to the

general finite element formulation in the code. The following is a list

of some of these additional features:

.. **a* .**:.-~%~' *" .,. *~* a ~ s. *~m-~ *.~. ..a . W*~*~a . * q1



(1) Multiple time step integration is available for problems

containing more than one mesh size in order to eliminate

unnecessary integration of the coarser meshes.

(2) Dynamic relaxation techniques are employed in the SAMSON2

code in order to reduce the dynamic analyses, with the

use of sufficient damping, to a static equilibrium

solution.

(3) Mass and stiffness (artificial viscosity) proportional

damping are used in the SAMSON2 code.

(4) A single large storage array (Q array) is used to store

most of the major variable arrays used in the execution

of SAMSON2.

(5) SAMSON2 contains many material models which range from

the relatively simple elastic-plastic uniaxial stress

material law to the complicated viscoplastic material

law.

(6) Slideline interface routines are used in the SAMSON2 code

to model relative sliding motion or material separation

between two different types of materials such as occurs

in SMI problems. These interfaces can also be rigid in

order to connect two different type elements.

4.2 8NQ Isoparametric Continuum Element Formulation and Verification

This section contains the documentati'on of the research which was

performed during the verification of the current SAMSON2 finite element

formulation for the 8N0 isoparametric continuu element. The following

'p
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is a list of the particular items which were investigated in the

formulation:

(1) the equations involved in the determination of the total

diagonal lumped mass matrix, [M],

(2) the equations involved in the determination of the

velocity strains, (d), Cauchy stresses,{a}, and internal

forces, {F int1 ,

(3) the calculations involved in the determination of the

nodal forces due to the externally applied loads, {F ex},

(4) the mass and stiffness proportional damping (CI[M] +

C2[K]) calculations,

(5) the equations used in calculating the internal strain

energy (U) and the external work (W) terms, and

(6) the solution of the equation of motion for the nodal

accelerations (u), velocities {1, and displacements {u).

These items were investigated in detail and are discussed ;n the

following subsections.

4.2.1 Element Configuration and Shape Functions

and the Derivatives for the 8NQ

Some important information relevant to many phases of the

formulation development for the 8NQ isoparametric continuum element is

presented here. The configuration of the 8NQ element for which the

formulation was developed is shown in Figure 4.1. The local (&,n)

coordinate system is shown at the center of the element. This

coordinate system is defined such that the values for E and rt vary
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between 1.0 (value on the right and upper element boundaries) and -1.0

,* (value on the left and lower element boundaries).

7 3

4.4

Y

x

Figure 4.1 8NQ Isoparametric Continuum Element.

The shape (interpolation) functions (NI) for the 8NQ element are shown

in Table 4.1 in terms of the local coordirate system. These shape

functions are used in both the interpolation of the element coordinates

(Equation 4.1) and the element displacements (Equation 4.2) for an

isoparametric finite element formulation.

8 8
x NIx y N iY1  (4.1)

1=1 I-l~

WhA W . R . . .-,'A . . .
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where,

x,y global (x,y) coordinates for any point in any element,

NI  shape (interpolation) function corresponding to node I,
and

xl,Y I = global (x,y) coordinates for node I.

8 8
u Z NIlu u -: NIUy I  (4.2)

where,

uxu = x and y displacements for any point in an element,

N I shape (interpolation) function corresponding to node
I, and

uxi, uy I  x and y displacements for node I. "

The fundamental property associated with these shape functions is that

the value for N is unity at node I and is zero at all other nodes. The
I

derivatives of these shape functions with respect to the local element

coordinates (NI/ M and aNl/an) are also shown in Table 4.1, These

derivatives are provided because they are more important than the shape

functions in the actual finite element formulation. As a final note to

this section, the shape functions and their derivatives from Table 4.1

exist in the SAMSON2 code correctly and were verified through

comparisons with References I and 12.

4.2.2 Determination of the Total Diagonal Lurped Mass Matrix

This section gives the equations used i, .AMSON2 to determine the

total diagonal lumped mass matrix, [MI, for the 8NQ element. Table 4.2

provides a flow chart of the main subroutines involved in the

" " -; ' ° '" W' 
' ' '
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calculation of [Ml and the operations performed in each subroutine. The

mass matrix [M] is developed only once and is assembled prior to any

other calculations in the SAMSON2 solution scheme. Therefore, the

elemental masses are determined from the initial problem configuration.

Table 4.2 SAMSON2 Flow Chart for the Determination of the Total
Diagonal Lumped Mass Matrix [Ml for an 8NQ Isoparametric
Plane or Axisymmetric Continuum Element.

Subroutine Operation

1. ASSBLE (called by SMAIN) Assembles the elemental mass matrices
DO I = 1, # OF ELEMENTS into the total diagonal lumped mass

matrix [M].

2. VASME This routine, which is called by ASSBLE,
calls the appropriate VnASME routine
which is used to compute the mass matrix
for an element which contains n nodes.

3. V8ASME This routine is used to compute the
elemental mass matrix for an 8NQ
isoparametric plane or axisynetric
continuum element for a particular order
of integration (iorder).

4. GAUSS1 This routine provides the Gauss-Legendre
abscissae and weight coefficient values
based on iorder which are used in VBASME

in order to determine the elemental mass
matrices.

CONTINUE I = I + 1.

Th:e two subroutines of primary importance in this investigation

were V8ASME and GAUSS1. The subroutine VBASME contains all of the

formulation used in the calculation of [M]. GAUSSI provides the

necessary Gauss-Legendre abscissae and weight coefficients used in the

0 ':. "



numerical integration of [M]. These coefficients are shown in

Appendix B with the column labeled ta containing the abscissae

coefficients and the column labeled h containing the weight

coefficients. These coefficients exist in the subroutine GAUSS1 to 15

decimal places. However, some of these coefficients were incorrectly

typed into the SAMSON2 code. Table 4.3 shows a list of the coefficients

that were found to be incorrect.

The first step in the process of determining [M] was to calculate

the mass contained in each element (performed in V8ASME).

Equations 4.3, 4.4, and 4.5 were used to calculate the area of an

element.

iorder iorder
A hih. IJI (4.3)

i=I j=1 '

j x x 2X ) (4.4)

;x 8 N1  8 aN1
- -x 2 -x 

at I an an I

(4.5)

_ 8 aN1  8 aN1= 8 _ I  yat -1 at an

where,

A area of an element,

iorder order of integration selected for the problem
analyses,

hi,h. = Gauss-Legendre weight coefficients,

ji- determinant of the Jacobian matrix which contains
the derivatives of the global (x,y) coordinates with
respect to the local (&,-' coordinates,

+'.."e"> .-" "".-."".. '".-.-.".". ...'- ':.". ,'r".; . ,..N.....W,.,.. , '-''''/ ''" '.' ''','?' '..'.' ,'.''N'.'''''' '. C
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Table 4.3 List of Gauss-Legendre Abscissae and Weight Coefficients
Incorrectly Typed into the Subroutine GAUSSI.

Order of SAMSON2 Correct
Integration Coefficient Coefficient

n

2 -0.57735 02691 8926 -0.57735 02691 89626

4 +0.33998 81043 584856 +0.33998 10435 84856

8 +0.96202 89856 497536 +0.96028 98564 97536

9 +0.83603 11073 2663 +0.83603 11073 26636

9 +0.96816 02395 07656 +0.96816 02395 07626

10 -0.67940 65682 99024 -0.67940 95682 99024

a) Abscissae Coefficients

Order of SAMSON2 Correct
Integration Coefficient Coefficient

n

3 0.55555 55555 556 0.55555 55555 55556

3 0.88888 88888 888889 0.88888 88888 88889

3 0.55555 55555 556 0.55555 55555 55556

8 0.22238 10345 3374 0.22238 10344 53374

10 0.26926 68193 09996 0.26926 67193 09996

10 0.24908 63625 15982 0.21908 63625 15982

b) Weight Coefficients

,
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*x ? X Y derivatives of the global (x,y) coordinates
with respect to the Iccal (&,n) coordinates,

shape function derivatives Irom Table 4.1, and

xI'Y = x and y coordinates for any node I in an 8NQ
element.

Equations 4.4 and 4.5 were evaluated using the Sauss-Legendre abscissae

coefficients obtained from GAUSSI for a partic.lar order of integration

(iorder). These coefficients were substituted into these equations for

and n for all possible combinations of the coefficients. Equation 4.3

requires the use of both the Gauss-Legendre abscissae and weight

coefficients in order to numerically integrate the area of an element.

These three equations used in the SAMSON2 formulation were verified

through comparisons with References 14 and 18. The volume and the

corresponding mass of an element were computed upon completion of the

area calculation. The volume calculation for a plane element involved

multiplying the area by the thickness. The mass of an element was then

calculated by multiplying the volume times the mass density as shown in

Equation 4.6.

iorder iorder
M Ot z r hih j IJl (4.6)

i-1 j-1

where,

M = mass for a plane element,

Q - mass density of the element, and

t = thickness of the element.

The volume calculation for an axisymmetric element involved multiplying

the area by 2r times the distance from tne axis of symmetry to the
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geometric center of an element (r). However, the SAMSON2 formulation

for determining was found to be incorrect. The correct formulation

for the determination of r is shown in Equation 4.7.

, - x I + x 2 +x 3 +x 4
1 24. 3 4 (4.7)

where,

r' distance from the axis of symmnetry to the geometric
center of an 8NQ element, and

x1,x 2 ,x 3 ,X4 = x-coordinates for the four corner nodes of an 8NQ
element (Figure 4.1).

The SAMSON2 formulation used a value of 3.0 instead of the value 4.0 in

the denominator. This error was verified by comparisons to formulae in

References 1 and 14 and through comparisons with hand calculated values.

In addition to this error, the factor 2v was not used in the calculation

of the volume. However the elimination of 2v was justified in that it

canceled out in the final solution of the equation of motion. A further

note regarding the axisymietric volume calculation is that the

calculation using F is only an approximation of the actual value. The
4"

mass was computed for an axisymnetric element using Equation 4.8. This

equation with the use of the correct value was verified as being

correct.

iorder iorder
M =o O F h.hj (,I (4.8)

The second step in the process of determining M , was the

allocation of the calculated element mass to the appropriate nodes. '0e

element mass was allocated to the nodes of an 8NQ according .

.4

4 L,
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Figure 4.2. As illustrated, 20% and 5/ of the element mass were -6

allocated to the midside nodes and corner nodes, respectively. This

nodal mass distribution used in the SAMSON2 coce could not be verified.

However, it was found to be similar to a tributary area approach where

the values were 18.75% and 6.25%. It was also lound to be similar to an

approach which used the scaled diagonal terms of a consistent mass

matrix where the values were 22.22% and 2.78%. In reviewing the

different references (5, 9, 15), it was determined that no standard

lumping scheme for the 8NQ existed. Instead, many schemes were found

that provided good results when used in problem solutions involving the

8NQ continuum element.

.05 .20 .05
0

.20 .20

.05 .20 OE ,

Figure 4.2 Nodal Lumped Masses for an 8NQ Element.

The final step in the process of determining (M] was the storage of

these nodal masses. The mass allocated to each node in an element wasIle

stored for each nodal degree of freedom in an array called smass. The

nodal mass allocations determined in step twc were added to %mass for
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each element. The diagonal lumped mass matrix [M] was completed when

the mass contribution of every element was stored in the smass array.

Upon the determination of [M], this mass matrix remained unchanged

throughout the entire solution and was only used to solve the equation

of motion at the end of each time step.

4.2.3 Determination of the Velocity Strains

This section displays the equations formulated in SAMSON2 that are

used to calculate the velocity strain tensor, {d). The velocity strain

tensor measures the current rate of deformation and is used for problems

involving geometric nonlinearities (large rigid body rotations and

deformations). Table 4.4 shows a flow chart of the pertinent

subroutines and their functions that are used in SAMSON2 in order to

determine the internal nodal forces {Fint}. The velocity strains fd)

are computed in subroutine V8FRCN in step a as shown in Table 4.4.

The general equations for the velocity strains are similar to the

strain-displacement relations for small-displacement theory.

Equation 4.9 shows the four velocity strain components for an 8MQ

axisymmetric continuum element.

avX 8 ?N I 1
x Tx X

I=1

d V  (4.9)

y ly J!,ay Vy1
2dxy 3 ( 3V 8 aN I aNI

2d y = (i. Vx + Ti Vy )

(continued)

.1
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Table 4.4 Flow Chart for the Determinatior of the Internal Nodal
Forces and Internal Strain Energy for an 8NQ
Isoparametric Plane or Axisymmetric Continuum Element.

Subroutine Ooeration

1. FRCIN (called by SMAIN) Combines the internal nodal forces for
DO I = 1, # OF ELEMENTS each element into a total internal nodal

force vector. Cooines the internal
strain energies for each element into one
value for each element type.

2. VFRCIN Calls the appropriate element routine
(VnFRCN) which coiroutes the internal
noaal forces for an element with n nodes.

3. V8FRCN Computes the internal nodal forces for an
8NQ isoparametric plane or axisymmetric
continuum element using the following
steps:

(a) Computes the global components for the
velocity strains using subroutines
GAUSSI, V8BMAT, V8SHAP, and GMPRD.

(b) Computes the corotational strain
increments using subroutines VSTRAN
and GMPRD.

(c) Calls the appropriate stress routines
through STRES which compute the total
stresses based on the current strain
increments and the viscous stresses
due to damping (SDAMP). Also, the
total strains are updated.

(d) Computes the internal nodal forces and
the internal strain energy for an 8NQ
element using the stress values from
(c) and subroutines STPRD and GTPRD.

CONTINUE I= I + 1.

.... -
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8

V I N1 VIdz : I X1
8

NI  xI

where,

dx ,d z  three normal velocity strain components in the x, y,
and z (r, z, and e) directions, 

-"

d = shearing velocity strain component,xy

Vx,V = velocity components for any point in an elementy (these velocities are never calculated),

d = distance from the axis of symmetry to the quadrature
point at which the strains were computed,

X current global deformed nodal coordinates for an 8NQelement,

Vxl,Vy I  velocity components for node I, and
aN I aN
7N1 aN1  derivatives of the shape functions with respect to

)x 'y the global (x,)j coordinate system.

The velocity strain component in the z-direction, dz , is equal to zero

for analyses of plane continua. The derivatives of the shape functions

with respect to the global coordinate system were determined using

Equations 4.10 and 4.11.

NI  _ NI xNI A
;x ac an an ac' J

(4.10)

N LN I x N I W x
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ax 8 aNI  ax 8 aNI
-- -Tx -= T- x

7T a E I an Ix I

(4.11)

8 aNI  8 aNI

The velocity strain components shown in Ecuation 4.9 were evaluated

using a matrix [B]. This matrix incorporates the expressions from

Equations 4.9, 4.10, and 4.11 such that the velocity strain components

are obtained through the multiplication of [E] times the nodal velocity

components (VxI and Vy).

Table 4.5 shows the results obtained when multiplying the rB]

matrix used in SAMSON2 times the nodal velocities. As shown, the -

velocity strains are multiplied by a factor equal to IJI. The velocity

strains were not directly calculated because the rB] matrix was

developed for use in the determination of. the internal nodal forces, so

that the IJI term canceled out (see pp. 53-55 in Reference 1). The

determination of the EB] matrix was performed in the V8BMAT subroutine

using values calculated for the shape function derivatives (aNl/ax,

aNI/ay) in subroutine V8SHAP. The [B] matrix was calculated for each

quadrature point within an element using tt'e Gauss-Legendre abscissae

coefficients obtained from the GAUSSI routine. Therefore, the velocity

strains were also computed for the same quadrature points. The general

matrix product routine GMPRD in SAMSON2 was used to multiply the [BI

matrix by the nodal velocity matrix as shown in Table 4.5.
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The next step performed in the calculation for the velocity strains

was the transformation of these strains from the global (x,y) coordinate

system to the corotational reference frame (x,y). A corotational

reference frame exists at each of the quadrature points and rotates

according to the movement of these points. Therefore, in addition to

the velocity strain calculations, a rotational velocity (w) was computed

for each quadrature point using Equation 4.12.

nVn+i aVn+ 1 8 aN1  Nn+j =v 1 8 x-N x ; a I V vn+ 4.2
-o )y (4.12)

Equation 4.12 was found to be identical to the equation for vorticity

used in fluid mechanics (18). The rotational velocity was multiplied by

the value for the time step in order to obtain the current rotation

increment. The total rotation for the current time step (en+1) was then

calculated using Equation 4.13 and was then stored in the strs array in

the last location assigned to an element quadrature point.

n+1 .en + t n+ (4.13)

where,

en+ ,en  total rotations which have occurred at a quadrature
point for the current and previous time steps,

At time step used for the explicit integration solution
scheme, and

W rotational velocity for a quadrature point which
occurred during the current time step.

The total rotation, n+ 1, was then used in *he transformation matrix,

[RI, in order to convert the velocity strains from the global (x,y)

i - , ',"; ,*V '''. * -' . "," "4'" . P - . -wv , , - .', -j
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coordinate system to the corotational framework (x,y). Equations 4.14

and 4.15 show the strain transformation matrix CR] and the multiplica-

tion process which was performed in order to determine the corotational

velocity strains. The [R] matrix was not multiplied by the velocity

strain in the z-direction since dz is not affected by rotation in the

x,y plane.

Cos20 sin 20 cos e sin o

[R] = sin 2G cos 20 -cos 0 sin 0 (4.14)

-2sin 0 cos 0 2sin 0 cos 0 cosZO-sin~e_

{d IJl} = [R] (d IJI) (4.15)

where,

{d IJl} velocity strains, multiplied by a factor IJI, in the

(x,y) coordinate system,

[RI = velocity strain transformation matrix, and

(d IJI} = velocity strains, multiplied by a factor IJII in the

global (x,y) coordinate system.

The transformation matrix was computed in subroutine VSTRAN in the

SAMSON2 code. A possible error was found in this subroutine VSTRAN.

For values of lel < 1.0 x 10" , the value for each of the sin o terms

was set equal to zero. However, according to small angle theory,

sin E a 0. This error may be trivial in the overall solution. The

multiplication process illustrated in Equation 4.15 was executed in

subroutine GMPRD.

One last computation was executed for the velocity strains. This

computation involved the multiplication of the corotational velocity

strains by an appropriate factor so as to obtain the incremental strains

" -. ''-v€ - , -" -. . -a- "'" , . - . . . . . .
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for the current time step. This computation is illustrated in

Equation 4.16 and was the last one performed prior to the calculation of

the stresses, {a, and the internal forces, Fint}.

(t{ d Q11} (4.16)

where,

{LE} = incremental strains determined 'Cr the current time step.

The formulation for the velocity strain :alculations was found to

be correct when compared to material in Refe-ences 1, 9, 12, and 16.

The only possible error found in the formulation was the use of the

approximation of sin e - 0.0 for lel < 1.0 x 6.-5. Also, the use of the

[B] matrix for the calculation of the velocity strains was corrected

later when a factor of 1/IJI was multiplied times the velocity strains.

V

4.2.4 Evaluation of Stresses and Internal Forces

The stresses calculated in SAMSON2 were evaluated using the Cauchy

stress tensor. This tensor was computed in tre corotational coordinate

system so as to maintain objectivity in the overall solution. The

Cauchy stress tensor is energetically conjugate to the velocity strain

tensor. Hence, the total internal work can be calculated using these

tensors. The Cauchy stress tensor is used foe the incremental analysis

of geometrically nonlinear problems.

The SAMSON2 code contains eight differert constitutive laws which

are used to determine the Cauchy stresses tased upon the incremental

strains already computed. In this study, orly the biaxial material laws

(subroutines STRES3 and STRES6) and the AFL engineering" material law

'-a
,*8* w" " % " % " , - , ", - ' . - ' w % - - . . % ,-, "". . - ' , ". " , ' ' % ". % % ,' .
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(subroutine STRES) were investigated. The remainder of the material

laws were not investigated because they were considered less important

(uniaxial laws) or had been investigated in prior studies. The

stress-strain relations are provided in the following subsections for

each material law investigated. An example of the derivations that were

required in order to determine the biaxial elastic-plastic stress-strain

matrices are also provided in Appendix C.

4.2.4.1 Stress Evaluations Using the Biaxial Elastic

Plane Strain Material Law (STRES6)

The formulation for the STRES6 subroutine was developed for

isotropic linear elastic materials. STRES6 can be used for plane strain

or axisymmetric analyses. All computations were performed in STRES6

under the assumption of totally elastic material behavior. Therefore,

no yield condition or plastic flow rule is used.

The stress-strain relations for the biaxial elastic plane strain or

axisymmetric material law were expressed in terms of total stresses and

total strain as opposed to incremental values due to the assumption of
.n 1

totally elastic behavior. Hence, the current total strains {0 were

computed prior to any stress calculations by adding the incremental

strains {A }n+* (Equation 4.16) to the total strains at the end of the

previous time step {O}n as shown in Equation 4.17.

;,n+l = {;)n + At{^}n+i (4.17)

The total stresses were then computed using the stress-strain relations

shown in Equation 4.18.
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n+1 Ev n+1 n 1 n 1 + E n 1ax (i + v (I - 2 v)( x + + £ 1 - E(1 ( -vxy z1 v"•

n+ Ev 21 + n+l + n n~U) + E ( ' )n1Cy ( 1+ v)1 - 2v)Cx y z +'.' y

n+1 E n+1 (4.18)
xy 2(1+. ) Yxy

n+1 Ev n+1 + n+1 + n+1 E n+1
z = (I * V)(1- 2v) x  + y  + z  +  z

These equations were used for both plane strain and axisymnetric

analyses with the strain in the z-direction, Cz, being equal to zero for

plane strain analyses. The values for £ and a were both found to be

equal to zero for plane strain analyses using v = 0 (Poisson's ratio).

The current total stresses and total strains for the corotational -

coordinate system were stored in the appropriate locations within the

strs array for each element quadrature point.

The calculations executed in STRES6 using Equations 4.17 and 4.18

were all verified through comparisons to References 1, 7, 12, 14, and .'

15. Therefore, the biaxial elastic plane strain or axisymmetric

material law was found to be correct.

4.2.4.2 Stress Evaluations Using the Biaxial Elastic-Plastic

Plane Stress Material Law (STRES3)

The subroutine STRES3 was developed for analyses involving a"

elastic-perfectly plastic or strain hardening materials. The solution

scheme for this subroutine is illustrated in Table 4.6 with CE and CEP

referring to the elastic and elastic-plastic stress-strain matrices

which will be presented in this section. I

"I',

• . . . %, . a. d -.. , .*.. * * -a,;.'€*+ +-'.€+ ++++ ,a + _ .. .
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Table 4.6 Solution Algorithm for Elastic-Plastic Stress
Calculations.

Given: STRAIN = total strains for current time step, {n

-n
EPS a total strains for previous time step, [6}

SIG = total stresses for previous time step, {a}

The following procedure is used to calculate the total stresses TAU for the

current time step, ({}+.

(a) Calculate the strain increment DELEPS, Jac)

DELEPS - STRAIN - EPS

(b) Calculate the stress increment DELSIG, {a}n+j, assuming elastic
behavior:

DELSIG - C x DELEPS

(c) Calculate TAU:
TAU - SIG + DELSIG

(d) With TAU as the state of stress, determine the value of the yield
function F.

(e) If F(TAU) < 0, elastic behavior assumption correct (loading elastically,
neutral lolding, or unloading). Hence, TAU is the correct stress value
and the calculations for this algorithm are complete (RETURN). If
F(TAU) > 0, steps (f), (g), and (h) must be executed.

(f) If the previous state of stress was plastic (as indicated by a flag), set

RATIO e 0 and go to step (g). Otherwise, there is a transition from
elastic to plastic and RATIO, the portion of DELSIG which is elastic,
must be determined. The variable RATIO is determined from the equation

F (SIG + (RATIO x DELSIG)} - 0

since at the stress SIG + (MTIO x DELSI) the yield function F - 0 and
yielding is initiated.

(g) Redefine TAU as the stress at start of yield

TAU - SIG + (RATIO x DELSIG)

and calculate the elastic-plastic strain increment

DEPS - (1 - RATIO) x DELEPS

(h) To obtain the final stresses, which include the effect of the complete
strain increment DELEPS, the stresses corresponding to the elastic-
plastic strain increment DEPS must be added to TAU. Hence, TAU is the

current state of stress (anl

TAU - TAU + (CEP x DEPS)

and the algorithm calculations are complete (RETURN).

aThis table was obtained from p. 393 in Reference 12.

I.
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Incremental stresses, {e}, were determined in STRES3 based on the

previously calculated strain increments (step b in Table 4.6). These

stresses were computed at elemental quadrature points as was done for

the velocity strains. These incremental stress calculations were

performed under the assumption that the strain increments were entirely

elastic. For this assumption, the incremental stresses were computed

using elastic stress-strain relations. Equations 4.19 and 4.20 show the

elastic stress-strain matrix used in the determination of the

incremental stresses and the corresponding multiplication process which

was executed. The incremental strain in the z-direction, Cz, was

computed according to Equation 4.21.

1 V 0

C V 1 0 (4.19)
S1-V

{(M =C x [Cc} (4.20)

where,
V;IT

fA Cao= [A y Atxy], and

;T
fA e~x Ay *xy-

"ce l (AC + Ac (4.21)z I---;(Ax y)

n+1
The total stresses for the current time step, (aln, were

calculated by updating the total stresses from the previous time step,

.P}nas shown in Equation 4.22.

Issshw
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{ n1 + (4.22)

n+1
These updated total stresses, fo}n, were then implemented into the

corresponding yield function (F) in order to determine if

elastic-plastic behavior had occurred during the time step. The yield

function used in STRES3 for the plane stress material law is shown in

Equation 4.23.

F =(2 + - + 3; ) (4.23)

This function was based on the von Mises yield criterion (11, 12, 15)

and was evaluated in subroutine STREQU using values obtained from

STRES3. The value for F determined in Equation 4.23 was compared to the

yield stress value (ald) obtained from the previous time step. This
n

yield stress value was initially established such that ayld a a1 , where

01 = the input stress value for the first point (cia 1) on the

monotonically increasing piecewise linear stress-strain curve. This

value for dn remained unchanged for a particular elemental quadrature

point until yielding was initiated. The yield stress value was then

redetermined such that a ld = F( ;n) except for the case of

elastic-perfectly plastic material behavior, where 'd remains equal toyl d

01. The yield value, ayld, was set equal to F(0n) in order to record

the previous state of stress or stress history for use in comparison

with the current state of stress as determined by Equation 4.23. In

n n
comparing F to ayld' if F < 'yldI then the assumption of elastic

behavior (loading elastically, neutral loading, or unloading) was

correct. Therefore, the stresses computed in Equation 4.22 were the
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correct total stresses for the current time step (step e in Table 4.6).

Howeer, f F a~d, then elastic-plastic behavior has occurred and the

stresses obtained from Equation 4.22 were incorrect and were

recalculated according to the elastic-plastic stress-strain relations in

the following paragraphs.

Two additional calculations were necessary for elastic-plastic

material behavior. The first calculation was the determination of the

plastic modulus (modulus of the next segment on the piecewise linear

stress-strain curve) and the next yield point. The plastic modulus (ErT)

was determined in subroutine STRMOD using Equation 4.24 and the yield

stress Yalue was set equal to a1 such that a > an
I yld*

E T (4.24)

* where,

ET z plastic modulus,

cite I stress and strain values for the next yield point on
the linear stress-strain curve, and

a11,11 * stress and strain values for the current yield
point.

However, if the stress-strain point (r.1 .0aI) did not exist, perfect

plasticity was assumed (ET - 0) and the yield stress value remained

equal to a1 1 As a note, the initial von Mises yield surface that was

established for the initial yield stress a~ was simply expanded for the

following yield stresses using an isotropic hardening rule.
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The second calculation performed was the evaluation of

Equation 4.23 using the stresses from the previous time step. This

value F(n) was then compared with nld using Equation 4.25.

SF(;n) - n

SHIST = -& -,d (4.25)

yld

Equation 4.25 was evaluated in order to determine if the previous state

of stress was elastic or plastic. If SHIST < 0.001, then the previous

state of stress was plastic and the incremental strains calculated in

Section 4.2.3 were entirely plastic. Therefore, the incremental

stresses calculated using Equation 4.20 were invalid. These incremental

stresses were then recalculated using an elastic-plastic stress-strain

matrix CEP. However, if SHIST 1 0.001, then the previous stress state

was elastic and the portion (RATIO) of the incremental stresses, {60},

which were elastic was determined us' .g Equation 4.26. This equation

was obtained based on the expression shown in Equation 4.27.

RATIO . Yd " )(4.26)

2F(y~) 2

where,

;n 2, ; n +A; M+ A; n 66t - 2a 0  2a a.a a+a a-A r
x x y y y x x y xy xy

F ;n + (RATIO x ) 0 (4.27)yld

Equation 4.26 was verified by comparison with the solution to 4.27. The

subroutine STRYIE was used to calculate RATIO. The elastic portion of

r.
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the incremental stresses was calculated using RATIO multiplied by the I

previously calculated incremental stresses. These elastic incremental

stresses were then added to the stresses from the previous time step as

shown in Equation 4.28.

= {a}n + RATIO x [A;) (4.28)

Equation 4.28 was executed in order to update the old stresses to

include the elastic portion of the incremental stresses. These updated lo

stresses were then implemented into the yield function in order to

update the stress state to include the elastic stress increments,

a = F('). This yield function value was used later in theOyld

determination of the elastic-plastic stress-strain matrix CEp. The

plastic strain increments (acxp, ACyp, and AYYxyP) and the elastic strain

increment in the z-direction (Ac z ) were calculated using RATIO as shown

in Equations 4.29 and 4.30.

(AC P ) 1 RATIO) (60) (4.29)

where,

{Ac p = plastic strain increments, and

{A;) = incremental strains from Section 4.2.3. I

AC z RATIO x Ac (4.30)

The plastic stress increments were calculated using elastic-plastic

stress-strain relations developed in accordance with the yield function

(F), isotropic hardening and an associated flow rule. These elastic-

plastic stress-strain relations are incorporated into the CEP matrix
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shown in Table 4.7. This matrix was developed for incremental

plasticity analyses using the yield function from Equation 4.23 and an

associated flow rule. The derivation of CEP for the plane stress

material law was similar to that shown in Appendix C for the biaxial

elastic-plastic plane strain or axisymmetric material law. The

incremental plastic stresses were determined using Equation 4.31. The

incremental strain, both the elastic and plastic portions, in the

z-direction, Ac z  was calculated using Equation 4.32. However,

Equation 4.32 is not correct. The correct formula for determining Acz

is shown in Equation 4.33.

{ap} CEP x (A; 1 (4.31)

where,

(A&p = incremental plastic stresses, {AOxP a yp ATxyP1 ,

CEP elastic-plastic stress-strain matrix shown in
Table 4.7, and

{Ap I = plastic strain increments, {Acxp Ac A-xyP} which
p P Y Y

were either the strains calculated in Section 4.2.3
(previous state of stress plastic) or the strains
calculated using Equation 4.29.

IV

ST: S11S33- + V 1 2 2 S33
)  

p,.
z z Ax 1 - S3 y

S12S3)33V 33

-B S 12S33  Yxy (1 - RATIO) (4.32)

eS33)

I
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where,

AC ACy, LY = incremental strains calculated in

Section 4.2.3,

3 1 1
_n 2 2 (l+vT ,yld I + T

AC = value from Equation 4.21 if RATIO = 0 or
z

value from Equation 4.30 (AE ) if RATIO 0.
Acz Ac -~ { (] (ZZ1 u " B BS11S33) ____________$2S3.) 3 Ay

V V

lv 82 c + 852233

33) 33)~BS

-B S S12 33
2 - yxy I (I - RATIO)(.3

=-V 33)

The only differences between the two equations exist in the expressions

containing Poisson's ratio. Equation 4.32 contains the terms t a

1- while the corresponding terms in Equation 4.33 are =Vad =1V

* The terms inside the brackets on the righthand side of Equation 4.33

were obtained by substituting &azP = 0 in the elastic-plastic

stress-strain relations for the plane strain or axisymmetric material

law and solving for AC zp

The total stresses for the current time step {;n+l were determined

using the plastic increments of stress obtained from the evaluation of

Equation 4.31. The total stresses were calculated using Equation 4.34.

{an+l (^In + {A (4.34)

where,

ml m. .. . .



n+1

fl)n+ = stresses for the current time step,

,,n = either the stresses from the previous time step if

RATIO = 0 or the stresses calculated in
Equation 4.28 if RATIO 0, and

{Ac I plastic increments of stress determined using
P Equation 4.31.

A value for the yield function (F) was then calculated with these new

stresses, F(n ). This value F(an ) was then compared with the value

for the next yield point, aI, obtained from subroutine STRMOO. This was

executed in order to determine if the current state of stress exceeded

the failure criterion for the next yield point aI. If F(anI4) ' al,

then the stresses calculated using Equation 4.34 were correct and
yld C However, if F( n+ ) a1, then F(on) _ nld and

nyld A ,=  I and the calculation process was reinitiated beginning with

the determination of the next value for the plastic modulus

(Equation 4.24) and the next yield point value. One other possibility

existed for the case of perfect plasticity. For this case, a reduction

factor RED was determined using Equation 4.35 which was then multiplied

by the stresses obtained from Equation 4.34 as shown in Equation 4.36.

After these two equations were executed, Equation 4.37 was evaluated.

n

REDd (4.35)
n+1

where,

RED = factor used to reduce the stresses calculated in
e4uation 4.34 so that the failure criterion,Fn+ 1 <y dn

F( ) yd was met.

- - - - .
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f;)"' RED x { 1 n+1 (4.36)

IF(n+l )  n

SHIST2 = n ,ld (4.37)

yld

where,

,In~l = stresses obtained from Equation 4.36.

If the value for SHIST2 was less than or equal to 0.001 the stresses

calculated using Equation 4.36 were the correct total stresses for the

current time step. But, if SHIST2 was greater than 0.001,

Equation 4.35, 4.36, and 4.37 were reexecuted until SHIST2 was found to

be less than or equal to 0.001. ?

Upon the determination of the total stresses for the current time

step, the total strains were updated to include the incremental strains

as shown in Equation 4.38. These new strains and the new stresses were

then stored in the appropriate location of the strs array. The value

for nyld was also stored in the strs array.

(cI (c}n + (4.38)

where,

{a} ) strains obtained from Section 4.2.3 (Acx, LC , and Ay& )
and the strain (Ac ) computed in STRES3. X X -

z

The entire formulation contained in STRES3 for the biaxial

elastic-plastic plane stress material law was found to be correct,

except for Equation 4.32 which was usea to determine the total strain

increment in the z-direction fez). However, it should be mentioned that

there should be more information in the SAMSON2 Users Manual (3) with

" .. .V% " - , ,- ... .....
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regard to the types of materials that can be correctly modeled using the

STRES3 subroutine. STRES3 should only be used for problems that involve

materials which exhibit ductile or semiductile stress-strain material

behavior. In fact, the von Mises failure criterion is only good for a

yielding mode of failure which is exhibited in ductile or semiductile

metals.

4.2.4.3 Stress Evaluations Using the Biaxial Elastic-Plastic

Plane Strain or Axisymmetric Material Law (STRES3)

The formulation for the bia;ial elastic-plastic plane strain or

axisymmetric material law was also contained in subroutine STRES3.

Therefore, the identical solution scheme (Table 4.6) was used for the

plane strain or axisymmetric material law as was used for the plane

strain material law with a few changes in the equations used. In this

section, due to this similarity in the solution scheme, only the

equations which were different are displayed. The discussion of the

solution algorithm will not be presented however.

The first difference between the two material laws was in the

elastic stress-strain matrix, CE. Equations 4.39 and 4.40 show the CE
EI

matrix and the corresponding multiplication process associated with CE.

1-v V 0 V

EEV 1-V 0 V

C= Ev (4.39)
(1+v)(1-ZV) 0 0 1-2v 0

V V 0 i-v

%'% %"
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{ C;} E X {A^} (4.40)

where,

{} x  0a y 6.1 xy AC z, and{ac}T : [acx ACy AYxy ACz ]"

As illustrated in these two equations, one additional stress term (LCZ)

and one additional strain term (Ac z) were present. However, the tE z

term equalled zero for plane strain analyses. It should be noted that

the Equations 4.21, 4.30, 4.32, and 4.33 that were used to determine the

strain increment in the z-direction (Ac z) for the plane stress material

law do not apply to the plane strain and axisymmetric material law. The

ACz term for axisymmetric analyses was calculated in subroutine V8FRCN.

The second difference between the two material laws was the yield

function that was used. The yield function for the plane strain or

axisymmetric material law is shown in Equation 4.41. Three additional

terms are present in Equation 4.41 compared to Equation 4.23. These

terms are all a function of a which equalled zero for plane stress.

F (a + 02 + 2 - xy aa - y + 3;2) (4.41)x. y " x z y z Xy

The third difference that existed between the two material laws

involved the iquation for determining RATIO. The value for t in

Equation 4.26 needed to be updated in order to include the oz terms.

Equation 4.42 shows the formula that was used to determine t for the

plane strain or axisymmetric material law.

w ,

4 ",' , ¢ # , % - " b "#,"%' -. # "w'r .. ". -w -.
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~n n ~nn n n
x x y x yy x^ nxny^ ]- ( 4 .4 2 )

The value for t determined in Equation 4.42 was substituted into

Equation 4.26 in order to determine which portions (RATIO) of the stress

and strain increments were elastic.

The final difference between the two material laws existed in the

elastic-plastic stress-strain matrix CEP. The derivation involved in

the determination of CEP and the final CEP matrix for the plane strain

or axisymmetric material law is shown in Appendix C. The incremental

stresses and strains corresponding to Equation 4.31 are {& p = rFcxp

Ayp A xyp 60zp] and {Aep} = Acxp ACyp AY xyp ACzp].

The remainder of the calculations performed in STRES3 were

identical for the two material laws. But, there were four stresses and

four strains involved in the calculations for the plane strain or

axisymmetric material law and only three stresses and three strains for

the plane stress material law.

The formulation for the plane strain or axisymmetric material law

was found to be correct through comparisons with References 12, 14, and

15. No errors were found in the entire plane strain or axisymmetric

formulation.

4.2.4.4 Stress Evaluations Using the Plane Strain or Axisymetric

AFWL "Enginee,,ng" Material Law (STRES9)

This section contains a brief discussion on the AFWL "engineering"

model. In addition, some of the principal equations that are used in

6M L%
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this model are displayed. The AFWL "engineering" material law was

developed primarily for modeling soils. It is defined by a piecewise

linear hydrostat (plot of hydrostatic pressure ([a x+ a + a /3) versus

volumetric strain) with corresponding bulk moduli for both loading and

unloading/reloading (KL and KU) (see Figure 4.3).

Lockup

IB

h Unloading I Reloading
I./

° /
° /"- Loadino

,--Tension Cutoff

Volumetric Strain

Figure 4.3 An Example of a Piecewise Linear Hydrostat Curve Which is
Used to Define the AFWL "Engineering" Material Law.

It is also defined by a yield (failure) surface which plots hydrostatic

pressure versus /J 2 (Drucker-Prager yield criterion) where VJ/2 equals
2w

Pq.1LRP4 " .
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the square root of the second invariant of the deviatoric stress tensor.

A nonassociated flow rule is employed in the AFWL "engineering" model.

It should be mentioned that the AFWL "engineering" model can only be

used to model strain hardening materials. Also, the AFWL model was

formulated only for plane strain or axisymmetric analyses. Hence, the

stresses, {a), and strains, {C), that were used in the calculations are

as follows:

(a = a y xy z ] and {0 = [ax ay Txy Oz]"

Some preliminary operations were performed prior to the

determination of the stress values at the elemental integration points.

The first operation was the determination of the total strains for the

current time step, {;}n+1 (see Equation 4.38). The next operation was

the determination of the four history parameters which are described

below:

pvolp hydrostatic pressure for the previous time step,
pn

n
pevol = volumetric strain for the previous time step, CVo l,

d4 = minimum volumetric strain which has been computed
throughout the solution, and

d6 volumetric strain at which the tension cut-off was
entered.

The final operation was the calculation of the volumetric strain for the
,'n+1

current time step (Cvol) as shown in Equation 4.43.

n+1 n+1 + n+1 + ^4.43'
vol Cx y Z

LI
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The value which was obtained from Equation 4.43 was compared with the

history parameter d4 in order to determine which solution scheme was to

be executed. There are two possible solution schemes that are used in

STRES9. The first is for a loading case where C Vol < d4 and the secondo~l -4 hs ;: cee
n+ 1scheme is for an unloading/reloading case E vol d4. These t,:o schemes

are discussed separately in the following paragraphs.

If the current value for the volumetric strain was less than or

equal to the value for the history parameter d4, then the solution was

determined to be in a state of loading. Upon this determination, a bulk

modulus (K - KL) value was determined from the hydrostat curve based on
thealu r n+ t n+1
u o l Also, the value for d4 was set equal to £vol and a

value for v (Poisson's ratio) was chosen from the input data based on
CVol' The normal and shear stresses for the current time step (a . and

-n+1
xy ) were then calculated for particular integration points according

to Equations 4.44, 4.45 and 4.46.

"n+1 n
n1 = n + 3 r VolVol)+

°i+ " (o"o2G + (4.44)

where,

2G 3K + V
'n

Cvol pevol, and

AP incremental change in the hydrostatic pressure between
the current and previous time steps as was calculated
using Equation 4.46.

-n+1 -n (4
Txy =xy + G axy (4.45)

n+1l
AP = K (co1  vol) (4.46)

Vol C'01

as~ ~ V5 V'( 'Vfr -V .1 ,. - 4
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These three equations were found to be correct when compared to

information that was obtained from AFWL personnel. However, a possible

error was discovered. The stress in the z-direction (oz ) was set equal

to 0.0 for elements having a thickness not equal to 1.0. This appears

to be a plane stress correction. The current value for the hydrostatic

pressure was calculated using Equation 4.47.

pn+1 pn + &P (4.47)

where,

p = time history parameter pvolp.

This value for the current hydrostatic pressure was then compared to the N
limiting mean normal stress value P (the tension cut-off value). Two

max

possible cases were obtained based on this comparison. The first case

was for pn+1 - Pmax < 0. This case showed that the loading had occurred

outside of the tension cut-off region of the hydrostat curve. For this

case (pn+1. Pmax < 0), a value for the failure function (XJ) was

computed by substituting the stress values that were calculated using
'U

Equations 4.44 and 4.45 into Equation 4.48.

n+1 2 - n+1 'n+1 2 + n+l ;n+1)2 n+12 2
)Jx C +(a -o ) + (a + 6(T

x x z y z xy

(4.48) -a

The value XJ was then compared with a value YJ which was obtained from I

the Drucker-Prager (17) yield (failure) surface (plot of J'T versus

hydrostatic pressure). The value for YJ was s* equal to the value for

)7! which was obtained from the yield surface corresponding to the value
2

for pn+l. The comparison between YJ and XJ was performed in order to

• t'
V."
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determine if yielding had occurred. If XJ < YJ, then the stresses which

were previously computed in Equations 4.44 and 4.45 were correct.

However, if XJ > YJ, then the nonassociated flow rule that was

formulated in STRES9 was applied and the stresses were recalculated by

substituting the previous stress values from Equations 4.44 and 4.45

into Equation 4.49.

n+1 p n+1 + c (;n+l pn+1
i i (4.49)
^n+1 coni "n+j
xy c Txy

where,
YJ

conl 7J.

The stress values that were obtained from Equation 4.49 were the correct

values for the case where yielding had occurred. The second case which

was obtained from the comparison between P n+1 and Pmax was for

pn+1 - Pmax > 0. This comparison shows that the current state of stress

occurs beyond the tension cut-off region. Therefore, the values for the

stresses that were computed in Equations 4.44 and 4.45 exceed the

tension cut-off value and must be corrected. These values were changed

';n+1 ^n+1 nh+1)anth
such that all of the normal stress values ( x , and aI)a

nan1 the
value for p.. were set equal to the limiting mean normal stress value

Pmax The shear stress value was set equal to 0.0. The time history

parameter d6 was also modified using Equation 4.50.

d6 vo + (PmaxK (4.50)

where,

d6 value of the volumetric strain when the solution entered
the tension cut-off region.

'5.'



If the current value for the volumetric strain cvo was found to be

greater than the value for d4, then the solution was determined to be in

an unloading/reloading state. The value for the bulk modulus (K = KU)

and the value for Poisson's ratio (v) were determined, as in the loading
* n+l hsevle

case, based on the value for £vol as long as pvolp < P These valuesVol max'

for the bulk modulus and Poisson's ratio were then substituted into

Equations 4.44, 4.45 and 4.46, as was done for the loading case, and the

remainder of the solution scheme was identical to that for the loading

case. However, if pvolp > Pmax' then another comparison was required

-n+1 n+1between cvol and d6. If Cvol was greater than or equal to d6, then the p

normal stress values remained equal to Pmax and the shear stress values %

-n+1

equal 0.0. For the other case where evol < d6, the stresses were

recalculated following the same procedure mentioned earlier in this

paragraph for the loading/reloading case where pvolp < P However,

the formulation in subroutine STRES9 was found to be incorrect for this

case where pvolp I Pmax and 1vol < d6 when compared to information which

was obtained from personnel at the AFWL. The total increment of

volumetric strain cannot be used in order to determine the stresses for

a case where reloading has occurred beyond the tension cut-off. The

proper formulation requires the determination of a factor F which is

equal to the percent of the total strain increment which is actually

reloading out of the tension cut-off. This factor F is computed using

Equation 4.51 and needs to be implemented into Equations 4.44, 4.45, and

4.46 in order to calculate the correct values for the stresses.

-- - - -- - - - - - - - - - -
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n+1 _ d6_C Vol (4.51)

, F n+1 n
Evo1 "vol

Two additional operations were performed after the correct stress

values were obtained for either the loading case or the unloading/

reloading case. The first operation which was executed was the storage

of the current stress and strain values, which were calculated at

particular integration points, in the strs array. The second operation

was the storage of the values for the four history parameters in the

strs array.

The formulation for the AFWL material model (STRES9) was verified

through comparisons with information that was obtained from AFWL

personnel and two errors were found. Also, it was found that a segment

within the STRES9 subroutine was never used in any analysis. This

segment was associated with a plane stress material law and appears to

have been eliminated from use in the AFWL model.

4.2.4.5 Evaluation of the Internal Nodal Forces

This section contains the development of the equations used in

SAMSON2 for the determination of the internal nodal forces IF inti.

These forces are produced as a result of the stresses and strains which

develop within an element (see Table 4.4 on page 83). Therefore, the

internal nodal forces F int} are a function of the amount of stress and

strain exhibited within an element.

Equation 4.52 is the basic equation used in the determination of

the internal nodal forces. However, no stiffness matrix is ever

. ' ,". * ,. '.o' ?.? ?5- '' N),'..',.,'.., .. .<,'..,,': '.' .; i,.¢z,. ,. ' .r , ' , ' '. ,I,
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determined in the execution of SAMSON2 as was mentioned in Section 4.1.

Therefore, the terms on the righthand side of Equation 4.52 need to be

changed into terms that are consistent with the SAMSON2 formulation.

{F i = [K]{U} (4.52)
1 nt

where,

fFi = internal nodal force vector,
int

[K] = structural stiffness matrix, and

(U) = vector containing the nodal displacements.

The stiffness matrix, [K], can be expressed in terms of the strain-

displacement and stress-strain matrices ([B] and [C]) that were

calculated in the previous sections as given in Equation 4.53.

[K] = r[B] [C] [B] dV (4.53)v

where,,%

[K] = elemental stiffness matrix calculated at a particular 
W

integration point,

[B] [B)/IJI , where [B) is the strain-displacement matrix
shown in Table 4.5 of Section 4.2.3, and

[C] - stress-strain matrix for a particular material model.

The next step is to substitute this expression for [K] into

Equation 4.52 which results in Equation 4.54.

F 1 1[B T[ [C)B dV (U} (4.54)
int v

But, this equation for (F can be simplified using the expressions in

the following equation:

I-



114

= [B]- {u}

fa c C (4.55)¢ {a} •[C] {c}

The equation resulting from the substitution of these two expressions

into Equation 4.54 is shown in Equation 4.56. However, Equation 4.56

still needs to be altered in order to incorporate the Gauss-Legendre

numerical integration scheme.

{F) = f [B] T {al} dV (4.56)
v

Equations 4.57 and 4.58 are the final expressions that were formulated

into the SAMSON2 code in subroutine V8FRCN for the evaluation of the

internal nodal forces for plane and axisymmetric analyses, respectively.

nI n n , T )}n+l
{Flnt) n l  t r z hi hj [ B(Eisnj)] {((i~nj  (4.57)

i-1 j.1

where,

Fint } n+1 - internal forces applied to the nodes of an 8NQ

element for a plane analysis,

(Fint T a [Fx1 F1 F12 Fy ... F F F F 8, where

Fxi, FyI - internal nodal forces in the x and y
direction for node I,

t - thickness of the element,

n - order of integration selected for the analysis,

hi,h - Gauss-Legendre weight coefficients,
IT

EB({inj))T - transpose of the stress-strain matrix shown in
Table 4.5 which was evaltiated at a particular
e'emental quadrature point with the coordinates
(Ci,nj) being assigned values corresponding to the

Gauss-Legendre abscissae coefficients, and
S

w
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i n+l  total stresses for the current time step, including
the viscous stresses due to damping, which were
evaluated at elemental quadrature points using an
appropriate material law and were then transformed
into the global (x,y) coordinate system.

n n.,

(Fi nt +
1  r Z hih. r(i ' ,n)[B(Ei'n )]T{ (l'nj)}n~l (4.58).5

where, -5.

{F. nn+1 = internal forces applied to the nodes of an 8NQ I
element for an axisymmetric analysis, and

= distance from the axis of symmetry (y-axis) to a .5.

particular quadrature point (Cin obtained by using

Equation 4.1 in Section 4.2.1 and solving only for x.

Equations 4.57 and 4.58 were developed by replacing the integral in '5

Equation 4.56 by the appropriate terms used in the Gauss-Legendre

integration scheme. In addition, the expressions in Equations 4.59 and

4.60 were used to simplify Equation 4.56.

dV - ro IJI dE dn (4.59)

where,

dV = differential volume used in the integration,

ra - t for plane analyses (-0), or h

S r( 1 ,nj) for axisymmetric analysis (a - 1), and

dE dn a differential area used in the numerical integration
scheme.

)= IJ [8] (4.60)

It should be noted that the total internal nodal forces for a particular

node included the contributions from all of the elements to which it was

associated.

L10
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The stresses that were used in Equations 4.57 and 4.58 were not

equal to the stresses that were calculated in the appropriate material

law subroutines. The stresses which were calculated using the material

laws were first adjusted to include the viscous stresses that were

calculated in order to simulate stiffness proportional damping. These

adjusted stresses were then rotated from the corotational (x,y)

coordinate system to the global (x,y) coordinate system by using a

suitable transformation matrix. Both of these adjustments to the stress

values that were obtained from the material law subroutines are

discussed in the following paragraph. One other observation that was

made regarding only Equation 4.58 was that the factor 2w was not

included. However, this factor is canceled later in obtaining the final

solution to the equation of motion.

The stresses {;}n+l that were calculated previously in the material

law subroutines were modified twice prior to their use in Equations 4.57

and 4.58. The first modification was the addition of the viscous

stresses { 0 }vis which were calculated in SAMSON2 in order to simulate

stiffness proportional damping through the use of linear artificial

viscosity. The reason for the use of linear artificial viscosity is

because a stiffness matrix is never created in the SAMSON2 explicit

code. Linear artificial viscosity was formulated such that the viscous

stresses {0}vis damp out the highest frequency of an element by

approximately the specified fraction of critical element damping (M).

The corotational viscous normal stresses {to' I were calculated in

SAMSON2 using Equations 4.61, 4.62, and 4.63.

I "



117

*vis vis + ViS (4.61)
{°ii = } + {Sii }  4.1

where,

hydrostatic viscous normal stresses, and

vis
i = deviatoric viscous normal stresses.

{vis}_2uB (d11 + d22 + d33  (4.62)
W max 

3

where,

- specified fraction of critical element damping,

B - bulk modulus computed in the stress routines,

Wma - maximum frequency of the element, and

d d d normal corotational velocity strains in the x, -

y, and z directions that were calculated in
Section 4.2.3.

*J

iv 2 _ ( 3 (4.62){ ii >  max

lo

where,

G ;hear modulus for a given material model, and %

d corotational velocity normal strains, 1-1, 2, 3.

-vis

The corresponding corotational viscous shear stress T was calculated
xy .

in SAMSON2 using Equation 4.64.

;vis . 2uG Ixy (4.64)
Txy Wmax t

The development for Equations 4.61-4.64 and the equations that were used

in order to approximate wmax are not shown here, but can be found in

N NS
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Reference 1. The total corotational stresses for the current time step,

including the viscous stresses that were calculated in Equations 4.61-

4.64, were calculated in SAMSON2 using the expressions shown in

Equation 4.65, where the first terms on the righthand side of the

expressions were calculated previously in the corresponding stress

routines. These expressions were calculated in subroutine SDAMP and

were also verified through comparisons with References 1 and 16. W

n+1 ;n+1 2 B (d11 + d22 + d33) + 2uG 2d11 - d22 - d33 ) 'p

x x +W 3 Wmamax max

dJ + d 2
n+I n+I + 2uB Cull + d22 + 33) + 2uG ( 22 - 1- 33
Y Y Wmax 3 max 3 (4.65)
n+1n+l d2B .d11 

+ d22 
+ d33) M 2d ( d 11 d2

Z Z 'ax 3max0

;n+i "n l 2uG Yxn+ n+1 + v
xy xy ' max 4t

These modified total stresses were then transformed in the SAMSON2 code

from the corotatlonal coordinate system (x,y) to the global coordinate

system (x,y) using Equations 4.66 and 4.67.
.-

20 20
cos2G sin 2G -sin e cos 9

sin cos2e sin e cos e (4.66)

2in e cos 9 -2sin 9 cos e cos2e -sin

where,

To transformation matrix used in SAMSON? in order to convert

the corotational stresses {61 to stresses in the global
coordinate system {a, and

0 current total rotation which has occurred at an element
quadrature point as computed by Equation 4.13. "

Ott
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n+1 [TQJ {,n+1 (4.67)

where,

(a!n+1 global components of the stresses that were computed

in Equation 4.65, and S

{,}n+l stress values that were computed using
Equation 4.65. ..-

An error was discovered in the stress transformation matrix, [T E, when

comparisons were made with References 1, 7, and 14. The correct

transformation matrix which should be used in the SAMSON2 formulation is

shown in Equation 4.68.
D

cos2e sin 2e -2sin e cos e

T e [R ]RT = sinke COS2e 2sin e cos e (4.68)

sin e cos e -sin e cos 0 cos2e -sin D

where,

[R] = transpose of the strain transformation matrix calculated
in Equation 4.14.

It should be mentioned that the incorrect transformation matrix

(Equation 4.66) was used in the formulations for the three-node

triangular (3NT), 4NQ, 5NT, 6NT, and 8NQ isoparametric continuum finite

elements. This error can be corrected by replacing the FORTRAN

statement

CALL STPRD (temp2,shatstress) p

which is formulated in the VnFRCN subroutines (n-3,4,5,6, and 8) with

the following FORTRAN statement:

CALL GTPRD (temp2,shat,stress,3,3,1). p

I
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The internal nodal force equations which were formulated into the

SAMSON2 code were found to be correct when compared to References 1, 9,

13, and 16. However, one error which was related to the internal force

calculation was found. This error was in the formulation for the stress

transformation matrix. This is a major error and needs to be corrected

in the current versions of SAMSON2 code in order for the program to

provide correct results.

4.2.4.6 Evaluation of the Internal Strain Energy

The equations that were formulated in the SAMSON2 code for the

determination of the internal strain energy are presented in this

section. Strain energy is a function of the Cauchy stresses and the

velocity strains within an element. The internal strain en~ergy isS

calculated correctly for these conjugate measures of strain rate and

stress.

The basic relation which is used for determining the internal .

strain energy is shown in Equation 4.69.

U 1 10 {a} dV (4.69)
VS

where,

U X total internal strain energy within a system, and

{c},a) = stresses and strains within a system.

However, this equation was altered in order to be consistent with the

SAMSON2 formulation. The resulting expressions which were used in the

SAMSON2 code for the determination of the total internal strain energy



are shown in Equations 4.70 and 4.71. It should be noted that a 2'r term

was not included in the determination of the internal strain energy for

axisymmetric analyses because it is canceled in the determination of the

energy error.

JE n n ;
n+1 n E[~~.U U + r hih 1 i ( i ni  Ae]} (4.7C)

I=l izi j=1

where,

n1nSun = total internal strain energies of the system for the
current and previous time steps, respectively,

JE = total number of elements in the system, and

&e increment of internal strain energy computed for an
elemental integration point as shown in
Equation 4.71.

TP

nstres T

ae= r (Ac(&i, nj)} n+ x x(E(lnj) n+l + {a(Eisnj )n) (4.71)

where,

nstres = 3 for plane stress analyses, and
= 4 for plane strain or axisymetric analyses;

'(Ci,nj) incremental strains that were computed in
Equation 4.16 of Section 4.2.3 for a particular
Gaussian quadrature point; and

n+ 1

(a(i,nj) n = total stresses that were computed using the
appropriate material law routines for the current
and previous time steps, respectively.

Equations 4.70 and 4.71 were verified through comparisons with

Reference 1. The value for the total internal strain enerny, Un+ was

stored in the strs array for use later in the energy error solution.

IV
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4.2.5 Determination of the External Nodal Forces

and the Corresponding External Work

The calculations that were involved in the determination of the

external nodal forces, {Fext}, and the external work (W) are discussed

in this section. These quantities were calculated in subroutines FREEFD

and FREEF2 of the SAMSON2 code. Some of the equations that were used in

these calculations are also provided. Formulation errors that were

discovered in these two subroutines are also mentioned.

The SAMSON2 code contains the following five different load types

(see p. 50 in Reference 3): p

1) axisymmetric pressure load line

2) plane pressure load line

3) initial impulse load line

4) force line

5) displacement history load line

with a load line referring to the consecutive nodes along which the load

was applied. The external nodal forces were computed in accordance with

the particular load type that was used in the problem solution.

Calculations of the external nodal forces were done in approximately the
.)

same manner for each of the five load types. These calculations are

discussed for each of the load types in the following paragraphs.

Initial nodal velocities were calculated for the initial impulse
-V

load line. These initial nodal velocities were calculated prior to the ,a.

start of the SAMSON2 explicit Integratioi. -:heme. These initial nodal

velocities were calculated in subroutine FREEFD of the SAMSON2 code
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using Equation 4.72 for the case in which the initial impulse load was

input in terms of the normal and tangential components.

Vx = i(Vt cos e - Vn sin e)t n (4.72)

y Vt sin 0 + Vn cos e)

where,

VV initial nodal velocities transformed from the input
normal and tangential components to the global x and
y components,

,-*, VtVn tangential and normal components for the input
initial impulse load, and

e = angle shown in Figure 4.4.

The sign convention that was used with this impulse load is illustrated
in Figure 4.4 with the normal and tangential components (Vn and Vt)

shown acting In the positive directions.

VtV

ve,

V

y
Figure 4.4 Initial Nodal Velocities for an Impulse Load Input in

Terms of Normal and Tangential Components.
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Equation 4.72 was found to be 'incorrect. The correct formula for

determining the initial nodal velocities (V and V )is shown inx y
Equation 4.73.

Vx OtCos 0 + V. sin e)

Vy 0 sin e - VCos o)

In comparing Equation 4.72 to Equation 4.73, the only differences

between the two equations are the signs assigned to the normal velocity

component terms. For the case in which the impulse load was input in

global x- and y-components, the values for V X and V ywere simply set

equal to these input values. The values for V, and V were stored inX y
their respective locations within the velocity (V) array for each

segment along the load line. Therefore, all of the nodes, except for

the first and last nodes on the load line, had contributions from both

of the segments on the load line of which they were a part. Two node

factors, factors by which the nodal velocities determined in1

Equation 4.72 were multiplied (values usually equal 2.0), were used in

order to increase the values for the initial velocities for these first

and last nodes such that they matched the values for the other nodes on

the load line. Upon determination of these initial nodal velocities, no

more calculations were executed for the initial impulse load and

subroutine FREEFD was never used again.

The calculations that were used in order to determine the external

nodal forces (nodal velocities and displacements) for the displacement

history load line were similar to those for the impulse load line.

However, an input load line history (displacement versus time curve) was
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suuseES. Thfoe th ispcaculantio hat was pherfsored was the

detriation wifi the nddisplacement auefra the crreotimegstepo the

specified component (x or y) for the displacement history load line.

Nodal velocities were also computed using Equation 4.74 and stored in

the appropriate locations within the velocity array (V). No other

'p.'pcalculations were performed after the determination of these external

forces (nodal velocities and displacement) in the FREEF2 subroutine.

n+1 u n u
at - (4.74)

where,

Vn a nodal velocity computed for the current time step
et, and

u n4+ 'U n a displacement values obtained from the load line
history data for the current and previous time
steps, respectively.

The values for the external nodal forces, {F 1, that were
ext

computed for the force line load were obtained using the subroutine

PRESS in the SAMSON2 code. The values for the external nodal forces
n+1were set equal to the force value. P ,which was obtained from the

force line history data for the current time step using PRESS. These

'p. values were then stored in the forcd array in the appropriate locations

corresponding to which force component (x or y) of the load line was

specified in the input data. Two other parameters were computed for the

force line load. These parameters were the total external work, nl

Jb'
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and the total linear impulse, WIM n+ 1, for the current time step. These

two parameters were calculated using Equations 4.75 and 4.76.

wn+l = Wn + At(pn+l + pn)( ndod * i )

i11

where,

wn+,wn total external work computed for a particular force
line for the current and previous time steps,

pn+1,n values for the forces for the current and previous

time steps that were obtained from the force line
history data using PRESS,

ndnod number of nodes on the force line, and

u +  2 nodal velocity values for the nodes on the load
I line.

WIMn+I = WIMn + ,et(Pn+ l + Pn)(ndnod) (4.76)

where,

WIMn+1,WIM * total linear imulse for the externally applied
force for the current and previous time steps.

These equations were verified through comparisons with References 1, 5,

g, and 16. The values for Wn+1 , pn+ 1  and WIM"l +  were all calculated in

FREEF2 and were then stored in the strs array.

The calculations for the external nodal forces for the plane and

axisywunetric pressure load lines were very similar to those for the

force line load. However, the equations that were used in the

calculations included the areas over which the pressures were being

applied. The expressions that were used in order to determine the p

external nodal forces for the plane and axisymmetric pressure load lines

are shown in Equation 4.77 and 4.78.

I..
,', ¢,:-/ . ... ,? 4:; .; 4 -,4-.;.i - -/, - . .- . .,. €€, ,
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f = p n+l t(yc2 - ycl)x (4.77).,
f . pn+l t(xc2 - xcl) "-7

y
where,

f f = external nodal force components that were computed
x y for a particular segment along a plane pressure load

line,

pn*l = current pressure value that was obtained from the

input load line history data using PRESS,

t thickness of the elements, and

xcI,ycI current displaced coordinates for node I of the load
line.

f pn+ r(yc2 - ycl)x (4.7)
f = pn+l r(xc2 - xcl)
y

where,

f fxf external nodal force components that were computed
for a particular segment along an axisymmetric
pressure load line, and

r - j(xci-xc2) x-distance from the axis of symmetry to the
middle of the load line segment.

Figure 4.5 shows an example segment from a pressure load line with the

applied pressure shown acting in the positive direction. The external

nodal force components (f and f ) were stored in the appropriateX y
locations within the forcd (external nodal force) array that

corresponded to the load line nodes for each segment of the load line.

The external work and the linear impulse parameters were also calculated

for the pressure load lines.



fU

f~x

(xc2,yc2)pn+l

fx (xcl 'ycl)

f
V

Figure 4.5 Typical Segment Along a Pressure Load Line.

Equations 4.79 and 4.80 are the expressions that were used in subroutine

FREEF2 of the SAMSON? code in order to determine the current total

external work for the plane and axisymietric pressure load lines,

respectively.

wn+l W wn + *(Pn+l + p)E(pvoln+l - pvoln)] (4.79)

ndn

pvoln - r'2 E )(Uxc n Ux
-1 YC+1 " yc I~x+uIl

- x c)un +un + Un) n (.0

- (u )(u n

where,

n
pvol = parameter calculated for time step n which

incorporates the total nodal displacement components
and the x- and y-components of the distances between
two adjacent nodes on the load line (area units),

xc ,ycI  = the originally input x- and y-coordinates for
node I,
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= total displacement components for node I in the

mesh,

ndn = ndnod - 1 = number of nodes on a load line - 1, and

r = t for plane analyses
= i(xcl + xc2) for axisymmetric analyses.

However, in a preliminary comparison made between these equations and

Equation 4.81 (obtained from References 1, 9, and 16), the external work p
formulation in the SAMSON2 code for the pressure line loads was not

verified.

Sn+1 = n + iatUn}T ({F n I + IF 1n+1)) (4.81)

ext ext

The linear impulse for the external nodal forces was obtained using

Equation 4.82. This equation was found to be correct when compared to

material in Reference 5.

n ndn ndn +l pn+1 pn
WIMn+ 1 : WIM n + *at[( r f + r f P + (4.82)

The pvoln+l, Pn+1, Wn+ 1, and WIMn+l parameters were all stored in the

strs array for use in the calculations for the next time step.

The majority of the formulation in subroutines FREEF2 and FREEFD

that was used in the determination of the external nodal forces,

external work, and the linear impulse was found to be correct. However,

two errors in the formulation were found and need to be corrected in

order to obtain accurate results for all analyses. These errors were in

the determination oi the initial nodal velocities for the impulse load

and the calculation of the external work for the pressure load lines.

One additional note regarding the equations for the axisymmetric %

e-
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pressure load is that the factor 21T was not included in any of the

equations. This elimination of the factor 2n was consistent with

previous axisymmetric formulations.

4.2.6 Solution to the Equation of Motion

This section contains a brief discussion regarding the general

equation of motion followed by a discussion to the solution of the

equation of motion formulated in the SAMSON2 code. The equation of

motion is a mathematical expression through which the dynamic

displacement values for acceleration, velocity, and displacement are

defined. The general expression for the equation of motion is as

follows:

[M]{u} + [C]{; + [K]{u} = P(t) (4.83)

where,

EM) a mass matrix for the system,

C] - viscous damping matrix for the system,

(K] system stiffness matrix,

{u},{u1,{u) = dynamic displacement values for the
acceleration, velocity, and displacement
occurring within a system, and

P(t) time varying externally applied load.

Each term in Equation 4.83 corresponds to a type of force with the terms

on the lefthand side of the equation being the inertial, damping, and

elastic forces, respectively. The soludi3n to the equation of motion

provides the values for the accelerations, velocities, and displacements

for a particular point In time. And, when the solution to the equation

%I
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of motion is obtained for different points in time, the time histories

for these three parameters can be obtained.

The equation of motion that was formulated in subroutine SOLVE of

the SAMSON2 code for time step n is shown in Equation 4.84.

[M]{u}n + [C){u}n + (F int n {F ext n (4.84)

where,

[M] lumped diagonal mass matrix that was determined in
Section 4.2.2,

[C] = damping matrix shown in Equation 4.85,

{F int = internal nodal forces that were computed in
Section 4.2.4.5, and

{F ext external nodal forces that were calculated in
Section 4.2.5.

This equation required the following two initial conditions: (1) {u)0

{u(O)} and (2) {ui}"  - 6u(O)). The accuracy of the solution due to

these initial velocity conditions is affected only slightly. The

damping matrix that was used in the SAMSON2 formulation is of the form

shown in Equation 4.85.

[C) C [M] + C2[K] (4.85)

where,

C1  * mass proportional damping factor, and

C2  = stiffness proportional damping factor.

The stiffness proportional damping term, C2[K], was included in the

determination of the nodal internal forces through the use of linear

IIN;_
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artificial viscosity. The mass proportional damping term was

substituted into Equation 4.84 for [C] which resulted in Equation 4.86.

nM]{U n + CjM](}nn (F I aF 1  (4.86)

The mass proportional damping term is only used for dynamic relaxation

problems (see Reference 1) in order to simulate static equilibrium

through the use of sufficient damping. The value for CI is determined

with the use of an estimate of the minimum frequency of a system as

shown on pp. "28-132 of Reference 3. The values for the nodal

accelerations at any time step were obtained from the solution to

Equation 4.86. EQuation 4.87 shows the expression that was used in

SAMSON2 in order to determ,'ne the values for the nodal accelerations for

time step n, ;' 
n

<un 2 [[M]-LI ,tn
{ur 2 I' M] - Fi ) - e(li n '-f (4.87)

2 C tet nt'

where,%S

[M• X inverse of the diagonal lumped mass matrix, and

a nodal velocities at the half time step.

Equation 4.87 was obtained by substituting the expression shown in

Equation 4.88 into Equation 4.86 and rearranging the terms.

{un {u n (4.88) S

Equation 4.88 was obtained through the use of central finite difference

expressions. The inversion of the diagonal lumped mass matrix, (M] 1,

in Equation 4.87 is trivial and only involves the inversion of each term

%I
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on the diagonal. it should be noted that the acceleration values that

are output for a particular analysis involving dynamic relaxation are

not equal to the values obtained from Equation 4.87. Instead, the

values that are output for the accelerations are obtained from the

solution to Equation 4.89. These values are the actual accelerations in

a dynamic analysis.

{u M]-'({F ext)n _ {F~ ntl n) (4.89)

The values for the nodal displacements and velocities were calculated in

SAMSON2 using the central difference expressions shown in Equations 4.90

and 4.91.

6,n-iu + at {U} (4.90)

where,

{u} -i = nodal velocities for the previous time step, and

{ul n values for the nodal accelerations that were
calculated using Equation 4.87.

Un+1 * U n + t6nJ(4.1

where,

(unl{u)n nodal displacements for the current and previous
time steps.

The values for the accelerations, velocities, and displacements that

were calculated using Equations 4.87, 4.89, 4.90, and 4.91 were adjusted

in the SOLVE routine to reflect the boundary conditions of the problem.

All of the equations in the SOLVE routine were verified through

S. comparison with References 1, 9, and 16. It should be noted that the ?v



134

factor does cancel out in the equation of motion for axisymmetric 0

analyses.

The values (u, u, and u) that were obtained by solving

Equations 4.87, 4.89, 4.90 and 4.91 were stored in the nodal

acceleration (a), velocity (v), and displacement (xl) arrays,

respectively, for use in the next integration cycle as shown in

Table 4.8. This table shows the order for which the calculations that

were exhibited in Section 4.2 were performed in the SAMSON2 explicit

integration scheme.

4.3 Summary of the SAMSON2 Formulation Errors

The 8NQ higher-order finite element formulation in the SAMSON2 code

was investigated and verified. Formulation errors were discovered in e.
SAMSON2 through this investigation and verification process. The

following is a list of errors and possible errors that were discovered "

in the SAMSON2 formulation: r
(1) Twelve Gauss-Legendre abscissae and weight coefficients were

incorrectly typed into the GAUSSI subroutine (see Table 4.3).

(2) The equation that was used in subroutine VBASME in order to

determine the mass for an axisymmetric 8NQ isoparametric continuum

element is incorrect (see Equation 4.7 and the associated

discussion). Also, a possible approximation error exists related

to the use of Equation 4.7 in the determination of mass for both

the 4NQ and 8NQ elements.

S
• , m - • • - r . . . .B" - r • • . q • , . .. .
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Table 4.8 Flow Chart for the SAMSON2 Explicit Integration Solution
Scheme.

Assemble Diagonal Lumped
* Mass Matrix [M]

Set Initial Conditions (-nO)

{(u1 0 = u(0) and {un (O)

a.I

Copt xena ocsad xenlWr

lCorn ute VelocitStrains, (dl

Compute Internal Forces and Internal Strain Energy

Solve Equations 4.87, 4.89, 4.90, and 4.91 for
Nodal Accelerations, Velocities, and Displacements

U~~n ~and (~~

--V

*~~~~~~~~~~~~ 72n-+ 7'~~b ~ ~ ~ % aS .'p S%.-,~.
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(3) A possible error exists in the formulation for the strain
transformation matrix (Equation 4.14). The term sin 0 is set equal

to zero in subroutine VSTRAN for I 1 I< 1.0 x 10- .

(4) An error may result if the biaxial elastic-plastic plane stress and

biaxial elastic-plastic plane strain or axisymmetric material laws

are used in analyses involving improper materials. The von Mises

failure criterion is only valid for ductile or semiductile metals.

(5) The equation in subroutine STRES3 that is used in order to

determine the strain increment in the z-direction (A ) is

incorrect for plane stress analyses where yielding has occurred

(see Equations 4.32 and 4.33 and corresponding discussion).

(6) The formulation for the AFWL "engineering" model in subroutine

STRES9 (see Section 4.2.4.4) contains the following four errors:

(a) The out-of-plane stress (az) is set equal to zero for plane

strain analyses which contain elements having a thickness not

equal to 1.0.

(b) The factor F, which is the portion of the strain which reloads P

out of the tension cut-off was not ivcluded in the STRES9

formulation. -

J
(c) A possible error exists if the computed value for the

volumetric strain (evol) exceeds the last limiting volumetric A.

strain value on the hydrostat curve. This error would occur

if the bulk modulus for the last loading segment on the

hydrostat curve was not equal to the lockup bulk modulus.

(d) Another possible error may occur if the value that is

calculated for the current hydrostatic pressure (pn+1) exceeds
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the value for the hydrostatic pressure which is associated

with the last input yield function point. If this condition

,1. occurs, then the value for YJ is set equal to the last yield

point value JF , which may or may not be the correct value.

' (7) The transformation matrix which is used in order to transform the
stress components from the corotational coordinate system to the

global coordinate system is incorrect (see Equations 4.66 and 4.68

and associated discussion). This error exists for all of the plane

and axisymmetric continuum elements.

(8) The equations in subroutine FREEFO that are used to calculate the

initial nodal velocities for an initial impulse load which has been

input in normal and tangential components are incorrect (see

Equations 4.72 and corresponding discussion).

(9) The external work equations in subroutine FREEF2 that are used in

order to compute the external work due to a plane or axisymmetric

pressure load line appear to be incorrect based on a preliminary

investigation that was performed (see Equations 4.79, 4.80, and

4.81 and corresponding discussion).

(10) The column labels that are associated with the output from the AFWL

"engineering" model are incorrect. The current hydrostatic

pressure and the current volumetric strain are labeled sig-yld and

rot, respectively.

These errors in the current finite element formulation for the SAMSON2

code need to be corrected ani tested.

r. , ? /" %VV.ia'. f%1 ,:WZ '. " " " " " .. . . . . . . . ." ". . . . . . .
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CHAPTER 5

Effect of the Corrected Formulation on the Finite Element Analyses

This chapter contains a discussion of the changes that occurred in

the solutions to the problems from Chapter 3 after the corrections were

made to the SAMSON2 finite element formulation based on the results from

Chapter 4. The purpose of this chapter was to determine if more

consistent and more reliable results could be obtained through the use

of the corrected finite element formulation. It should be noted that

some of the errors that were discovered in the SAMSON2 finite element

formulation were unrelated to the problems from Chapter 3. Hence, the

problem solutions were unaffected and the significance of these errors

could not be determined.

The majority of the corrections that were made to the SAMSON2

formulation had little or no effect on the results for the problems in

Chapter 3. For instance, the corrections for the Gauss-Legendre

abscissae and weight coefficients in subroutine GAUSS1 resulted in no

change for any of the 8NQ element solutions. bmwver, all of these

solutions used an order of integration of 2.0. These corrected

coefficient values may be significant for problems in which a higher

order of integration is specified. The approximation for sin e that is

used in subroutine VSTRAN for 11 < 1.0 x 10-5 was changed to sin

- sin e for all values of e. This correction was very insignificant

as might be expected. The equation in subroutine STRES3 that is used to

calculate the incremental strain in the z-direction (Ac z) was corrected

using Equation 4.33. This correction resulted in only a 1% difference
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in the values for the total strains (c) between the two solutions. No h

z
other values (displacements, strains, or stresses) were affected by this

correction to the STRES3 routine. The correction to the stress

transformation matrix also was insignificant in its effect on the

problem solutions. Only slight changes occurred in the solutions due to

this modification. The use of the F approximation in the determination

of the diagonal lumped mass matrix for an axisymmetric continuum was

found to have no effect on the results for the axisymmetric problems.

However, the equation for determining r was in error in the original

SAMSON2 formulation. The correct expression for F (Equation 4.7) was

substituted into the updated formulation which resulted in significant

changes in the 8NQ axisymmetric solutions. This corrected F expression

resulted in very significant changes in the 8NQ element results for both

the axisymmetric wave propagation analysis and the axisymmetric analysis

of the soil-structure interaction problem. Figures 5.1, 5.2, and 5.3

show the relative improvements in the results for the axisymmetric wave

propagation when compared to Figures 3.23, 3.24, and 3.25. As shown,

the 8tQ solution which was obtaied using the updated formulation no

longer lags behind the 4NQ element solution. The corrected F

formulation also improved the results for the axisymmetric analysis of

the soil-structure interaction problem which was obtained using the 8NQ

isoparametric element. Table 5.1 when compared to Table 3.6 shows the

relative improvement between the two 8NQ solutions. The 8NQ solution

which was obtained using the corrected F formulation exhibited a much

better agreement with the 4NQ solution. A significant improvement in

the 8NQ solution to the soil-structure interaction problem for the

R't, "m ". %, m -%.' . . .

• • , . . . q q q . o • . . p .
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Table 5.1 Comparison of Y-Displacement Values Between the 4NQ and
8NQ Solutions for the 8NQ-6 Element Structural Mesh and
the 4NQ-12 Element Structural Mesh (1.0 psi Peak Load)
(Soil-Structure Interaction Problem) After Mass
Formulation Corrected.

Original 8NQ 4NQ Percent
Node Location Y-Displacement Y-Displacement Difference

x-coordinate y-coordinate t=.8x1O" 3 sec t=.8x10 "3 sec Based on

(in) (in) (in x 10-) (in x 10"4) 4NQ Solution

0.0 72.0 -.2231 -.2112 5.6%
3.0 72.0 -.2068 ......
6.0 72.0 -.1961 -.2009 2.4%
9.0 72.0 -.1882
12.0 72.0 -.2154 -.1972 9.2%
0.0 66.0 -.2076 -.2073 0.1%
6.0 66.0 -.1894 -.1961 3.4%
12.0 66.0 -.1971 -.1912 3.1%
0.0 60.0 -.1890 -.1996 5.3%
3.0 60.0 -.1869 ......
6.0 60.0 -.1916 -.1878 2.0%
9.0 60.0 -.1941 -....

12.0 60.0 -.1827 -.1831 0.2%
0.0 54.0 -.1886 -.1949 3.2%
6.0 54.0 -.1882 -.1785 5.4%
12.0 54.0 -.1777 -.1710 3.9%
0.0 48.0 -.1731 -.1898 8.8%
3.0 48.0 -.1795 ......
6.0 48.0 -.1792 -.1711 4.7%
9.0 48.0 -.1751 ......

12.0 48.0 -.1745 -.1612 8.3%
0.0 42.0 -.1584 -.1788 11.4%
6.0 42.0 -.1685 -.1639 2.8%
12.0 42.0 -.1724 -.1563 10.3%

'.
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applied blast load was also observed. The remainder of the errors, I

listed in Chapter 4 and not discussed in this section, were not related -

to the problem solutions in Chapter 3.

In conclusion, the majority of the SAMSON2 formulation errors that I

were presented in Chapter 4 were insignificant in their effect on the J

problem solutions. However, the corrected formulation rendered a

significant improvement in the 8NQ axisymmetric analyses. On the basis P

of this result, the corrected SAMSON2 formulation does provide more

consistent and more reliable results. %

CU

I.
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CHAPTER 6

Conclusions and Recommendations

The primary conclusion, based on the results that were presented in

the previous chapters, is that the current finite element formulation

for the eight-node quadrilateral isoparametric continuum element

provides consistent and reliable results for problems which involve

plane analyses. However, some minor errors exist in the general SAMSON2

finite element formulation that need to be corrected. Also, the 8NQ

axisymmetric continuum formulation contains a significant error in the

axisymmetric mass formulation that needs to be corrected in the current

formulation in order for accurate results to be obtained. Hence, the

errors that were discovered in the SAMSON2 formulation (see Chapter 4)

must be corrected in order for consistent and reliable results to be

obtained for both 8NQ axisyiwetric analyses and general continuum finite

element analyses.

Some further conclusions that were drawn based on the results from

the previous chapters are as follows:

(1) The higher-order element (5NT, 6NT, and 8WQ) solution schemes are

less efficient than the 4NQ solution scheme. This conclusion is

based on the fact that much longer execution times were required

for the higher-order element solutions.

(2) The finite element formulation for the 6NT isoparametric continuum

element works properly for elastic plane analyses of flexure

problems. This conclusion is based on the good correlation in
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results that was obtained in the cartilever beam analyses between

the SAMSON2 and the corresponding analytical solutions.

(3) The 5NT isoparametric continuum elemert should only be used as a

transition element for which it was designed. This conclusion is

based on the 5NT results for the cantilever beam problem.

(4) Smaller time step values are necessary for solutions which involve

higher-order elements as opposed to the values that are required

for 4NQ element solutions.

(5) The higher-order element (6NT and 8NQ) solutions were more accurate

in some cases compared to corresponding 4NQ solutions and were

obtained using fewer nodes and elements.

Recommendations for future work are presented below. These

recommendations are based upon both the work that has already been

performed and the results that were obtained during this study.

(1) The 8NQ element needs to be used with the corrected formulation in

a soil-structure interaction (SSI) problem for which test data are

available in order to determine whether the 8NQ element solution is

accurate for an SSI problem.

(2) Additional problems need to be analyzed using the 8NQ higher-order

element In order to test the performance of the SAMSON2 8NQ finite

element formulation more thoroughly.

(3) The 5NT and 6NT continuum elements need to be investigated more

extensively through the solutions to more problems and the

formulation verifications.

(4) Problems need to be analyzed using discretizations which contain

both the higher-order and the 4NO elements. Results for these

,1*
- :/' " - -'Z-72 :; /% L ; * * . :. ;/ / ;* * ; : : i '* ' ' ' W
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problems could be used to determine whether transitions can be made

between the different elements with accurate results still being

obtained.

(5) The corrected finite element formulation needs to be further tested

since some of the errors were unrelated to the problem analyses

that were performed in this investigation. For instance, the

corrections in the AFWL "engineering" model need to be further

tested.

(6) A further investigation and verification needs to be undertaken

regarding the equations that are used in the SAMSON2 code in order

to compute the external work for plane and axisymmetric pressure

loadings.

(7) If the 8NQ finite element formulation produces inaccurate results

in future problem analyses, then the following two items should be

performed:

(a) development of alternative schemes for determining the nodal

masses, and

(b) investigation of the addresses and ivdexes that are used in

the 8NQ finite element formulation in order to store and

recall information from the various parameter arrays.



las

REFERENCES

1. Belytschko, T. and Robinson, R. R., SAMSON2: A Nonlinear
Two-Dimensional Structure-Media Interaction Computer Code,
AFWL-TR-81-109, Air Force Weapons Laboratory, Kirtland Air Force
Base, New Mexico, January 1982.

2. Schreyer, H. L., Personal communication with regard to the
higher-order finite element formulation in the SAMSON2 code.

3. Schreyer, H. L., et al., SAMSON2, A Nonlinear Two-Dimensional
Structure-Media Interaction Computer Code: User's Manual (Update),
AFWL-TN-82-18, Air Force Weapons Laboratory, Kirtland Air Force
Base, New Mexico, June 1984.

4. Seemann, D. R., Personal communication with regard to the
higher-order finite element formulation in the SAMSON2 code.

5. Clough, R. W. and Penzien, J., Dynamics of Structures,
McGraw-Hill, New York, 1975.

6. Berglund, J. W. and Rudeen, D. K., STEALTH and SAMSON2
Verification Calculations, NTE-TN-83-20, Air Force Weapons
Laboratory, Kirtland Air Force Base, New Mexico.

7. Higdon, A., et al., Mechanics of Materials, 4th ed., John Wiley &
Sons, New York, 1985.

8. Paz, M., Structural Dynamics: Theory and Coiputation, 2nd ed., Van
Nostrand Reinhold Company, New York, 1985.

9. Belytschko, T. and Hughes, T. J. R., eds., Computational Methods

for Transient Analysis, Elsevier Science Publishers B.V.,
Amsterdam, 1983.

Structural Mechanics, Academic Press, New York, 1973.

11. Boresi, A. P., et al., Advanced Mechanics of Materials, 3rd ed.,
John Wiley & Sons, New York, 1978.

12. Bathe, K. J., Finite Element Procedures in Engineering Analysis,
Prentice-Hall, Englewood Cliffs, New Jersey, 198Z.

13. Gallagher, R. H., Finite Element Analysis: Fundamentals,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

14. Weaver, W. and Johnston, P. R., Finite Elements for Structural
Analysis, Prentice-Hall, Englewood Clif's, New Jersey, 1984.

15. Zienkiewicz, 0. C., The Finite Element Method, 3rd ed.,
McGraw-Hill, New York, 1979.

. .



149

16. Belytschko, T., Chiapetta, R. L., and Bartel, H. D., "Efficient
Large Scale Non-Linear Transient Analysis by Finite Elements."
International Journal for Numerical Methods in Engineering,
Vol. 10, pp. 579-596. 1976.

17. Drucker, D. C. and Prager, W., "Soil Mechanics and Plastic Analysis
or Limit Design." Quarterly of Applied Mechanics, Vol. 10, No. 2,
pp. 157-165, 1952.

18. Kreyszig, E., Advanced Engineering Mathematics, 5th ed., John Wiley
& Sons, New York, 1983.

.,



I

150

APPENDIX A
Examples of SAMSON2 Input for the Finite Element Analyses

I.
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E..ASTIC CONT. 16 QUAD ELTS WITH DISPLACEMENT/FREE RT END

27 16 1 6 130 0.25 1 0
3 1

980. CM DYE DYNE
1 6 4 ELASTIC PLANE STRESS

0.0 1.0

1.0 1.0 0.0 0.0
1
9 16.0

10 2.0
18 16.0 2.0
19 0.0 4.0
27 16.0 4.0
1 1 2 11 10 1

8 8 9 18 17 1
9 10 11 20 19 1

16 17 18 27 26 1
121

1021
1921
901
1801
2701

8 3 2
1104X-DISPL NODE= I

3104X-DISPL MODEw 3
5104X-DISPL NODE= 5
7104X-DISPL NODEs 7
14104X-DISPL NODEn14
3114X-VZL NOD~s3
S114'-VL I1ODE5S

7114X-VEL NODE"7
2 S4ST3ESS AT 2
4 S4STUSS AT 4
6 54STUSS AT 6

25 3
SO 3

2 1 5 3
1 3 S 7 14
2 4 6
1 3 2 1 9 10

0. 0. 2. 8.01-S 4. 2.931-3 6. 6.171-3

8. .01 10. 1.3631-2 12. 1.7073-2 14. 1.9241-2

16. .02 35. .02
1 19

Figure A.1 One-Dimensional Wave Propagation Problem: Input for the
4NQ Element Discretization.

'p.
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ELASTIC CONT. 16 8-NODED QUAD ELTS WITH DISPLACEMENT/FREE RT END
69 16 1 10 130 0.25 1 0

3 1
980. CM DYNE DYNE 1 "

1 6 4 ELASTIC PLANE STRESS
2.0 1.0 "

1.0 1.0 0.0 0.0
1
5 4.0
6 1.0
8 1.0 4.0
9 2.0

13 2.0 4.0
14 3.0
16 3.0 4.0

17 4.0 4.

21 4.0 4.0
22 5.0
24 5.0 4.0 I
25 6.0
29 6.0 4.0
30 7.0
32 7.0 4.0
33 8.0
37 8.0 4.0
38 9.0
40 9.0 4.0
41 10.0
45 10.0 4.0
46 11.0
48 11.0 4.0
49 12.0
53 12.0 4.0

54 13.0
56 13.0 4.0
57 14.0
61 14.0 4.0
62 15.0
64 15.0 4.0 4

65 16.0
69 16.0 4.0

1 1 9 11 3 6 10 7 2 1 8
8 57 65 67 59 62 66 63 58 1 8

9 3 11 13 5 7 12 8 4 1 8 0

16 59 67 69 61 63 68 64 60 1 8 7-

121 1
-521 1

Figure A.2 One-Dimensional Wave Propagation Problem: Input for the
8NQ Element Discretization.

NI
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6501
-6901 1

1 a 12 2

I104X-DZSPL NODE I
17204X-DZSPL NOD=E17
33104X-DISPL NODE-33
49104XDISPL NODER49
35104X-DISPL NODE35
17114X-VEL NODE=17
33114X-VEL NODE933
49114X-VEL MODE049

2 S4STuSS EL2 #1
2144STRESS EL2 02

223457RESS EL2 #3
2324STRESS EL2 #4
4 S4STRESS EL4 #1

4144STRESS EL4 #2
4234STRESS EL4 #3
4324STRESS EL4 #4
6 54STRESS EL6 #1 V

6144STRESS ZL6 #2
6234STRESS EL6 #3 ".

6324STRESS EL6 #4
25 3
50 3 p.

2 1 5 3 p:

1 17 33 49 35

2 4 6
1 5 2 1 1 10 3

0. 0. 2. 8.0E-5 4. 2.93E-3 6. 6.17E-3

S. .01 10. 1.383E-2 12. 1.70?-2 14. 1.924E-2

16. .02 35. .02 . p.

I

-

:p

Figure A.2 One-Dimensional Wave Propagation Problem: Input for the

8NQ Element Discretization (Continued).

I
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STATIC ANAL. OF A CANT. BEAM USING 64 4NQ ELEMS. 6/20/85 BY S. MILLER
85 64 1 5 4000 3.4E-5 1 0 1000.

2 0 0 0 1
32.2 FT

1 3 4 4-NODE PLANE CONTINUUM ELEMENTS
0.01 2.0
16.0 4176.0E6 0.0 0.00 0.0

1 0.0 0.0
17 16.0 0.0
18 0.0 1.0
34 16.0 1.0
35 0.0 2.0
51 16.0 2.0
52 0.0 3.0
68 16.0 3.0
69 0.0 4.0
85 16.0 4.0
1 1 2 19 18 1

16 16 17 34 33 1
17 18 19 36 35 1
32 33 34 51 50 1
33 .35 36 53 52 1
48 50 51 68 67 1
49 52 53 70 69 1
64 67 68 85 84 1

111
" 1811

3511
... 5211
46911

1 1 2
51200
1 50
8 50

5000 5000
1 17 -1 1 3

0.0 3.1E-3 100.0 1.0 100.0
69

Figure A.3 Cantilever Beam Problem: Input for the 4NQ Element
Discretization.

"C
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STATIC ANAL. OF A CANT. BEAM USING 32 5NT ELEMS. 6/20/85 BY S. MILLER

61 32 1 5 4000 3.4E-5 1 0 100c.
2 1

32.2 FT
1 3 4 5-NODED TRIANGULAR CONTINUUM ELEMENTS

2.0 2.0
16.0 4176.0E6 0.0 0.0 0.0

1 0.0 0.0
9 16.0 0.0

10 0.0 1.0
p26 16.0 1.0

27 0.0 2.0
35 16.0 2.0
36 0.0 3.0
52 16.0 3.0
53 0.0 4.0
61 16.0 4.0
1 1 2 27 11 10 1
2 2 3 29 14 13 1
3 3 4 29 15 14 1
4 4 5 31 18 17 1
5 5 6 31 19 18 1
6 6 7 33 22 21 1
7 7 8 33 23 22 1
8 8 9 35 26 25 1

9 28 27 2 11 12 1
10 29 28 2 12 13 1
11 30 29 4 15 16 1
12 31 30 4 16 17 1
13 32 31 6 19 20 1

14 33 32 6 20 21 1
15 34 33 8 23 24 1
16 35 34 8 24 25 1
17 27 28 54 38 37 1
18 28 29 54 39 38 1

19 29 30 56 42 41 1

20 30 31 56 43 42 1
21 31 32 58 46 45 1
22 32 33 58 47 46 1
23 33 34 60 50 49 1
24 34 35 60 51 50 1
25 54 53 27 36 37 1
26 55 54 29 39 40 1
27 56 55 29 40 41 1
28 57 56 31 43 44 1
29 58 57 31 44 45 1

30 59 58 33 47 48 1

F4gure A.4 Cantilever Beam Problem: Input for the 5NT Element
Discretization.

I.i:



7 7 777. T ", V. V
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31 60 59 33 48 49

32 61 60 35 51 52
111

1011
2711
3611
5311

1 1 2
35200

1250
4150

5000 5000 0 0

1 9 -1 1 3

0.0 3.1E-3 100.0 1.0 100.0
53

Frt
"( n

.5

.5

S.,,

•.

Figure A.4 Cantilever Beam Problem: Input for the 5NT Element

Discretization (Continued).'
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STATIC ANAL. OF A CANT. BEAM USING 32 6NT ELEMS. 6/20/85 BY S. MILLER

85 32 1 5 4000 3.4E-5 1 0 1000.

2 1
32.2 FT

1 3 4 6-NODED TRIANGULAR CONTINUUM ELEMENTS
2.0 2.0
16.0 4176.0E6 0.0 0.0 0.0

1 0.0 0.0
17 16.0 0.0
18 0.0 1.0
34 16.0 1.0
35 0.0 2.0

51 16.0 2.0
52 0.0 3.0
68 16.0 3.0
69 0.0 4.0

85 16.0 4.0
1 i 3 35 2 19 18 1 4
4 13 15 47 14 31 30 1 4

5 3 5 39 4 22 21 1 4
8 15 17 51 16 34 33 1 4
9 3 37 35 20 36 19 1 4

12 15 49 47 32 48 11 1 4
13 3 39 37 21 38 20 1 4

16 15 51 49 33 50 32 1 4
17 35 37 71 36 54 53 1 4

20 47 49 83 48 66 65 1 4
21 37 39 71 38 55 54 1 4

5 24 49 51 83 50 67 66 1- 4
25 35 71 69 53 70 52 1 4

28 47 83 81 65 82 64 1 4

29 39 73 71 56 72 55 1 4

32 51 85 83 68 84 67 1 4

i11 17
-6911 17

e 1 1 2

51200
1250
61 5.

5000 5000
1 17 -1 1 3

3.1E-3 100.0 1.0 100.0

69

Figure A.5 Cantilever Beam Problem: Input for the 6NT Element

Discretization.



STATIC ANAL. OF A CANT. BEAM USING 16 8NQ ELEMS. 6/26/85 BY S. MILLER
69 16 1 5 4000 3.4E-5 1 0 1000.

2 0 0 1
32.2 FT

1 3 4 8-NODE PLANE CONTINUUM ELEMENTS
2.0 2.0
16.0 4176.0E6 0.00 0.00

1
17 16.0
18 1.0
26 16.0 1.0
27 2.0
43 16.0 2.0
44 3.0
52 16.0 3.0
53 4.0
69 16.0 4.0
1 1 3 29 27 2 19 28 18 1
2 3 5 31 29 4 20 30 19 1
3 5 7 33 31 6 21 32 20 1
4 7 9 35 33 8 22 34 21 1
5 9 11 37 35 10 23 36 22 1
6 11 13 39 37 12 24 38 23 1
7 13 15 41 39 14 25 40 24 1
8 15 17 43 41 16 26 42 25 1
9 27 29 55 53 28 45 54 44 1

10 29 31 57 55 30 46 56 45 1
11 31 33 59 57 32 47 58 46 1
12 33 35 61 59 34 48 60 47 1
13 35 37 63 61 36 49 62 48 1
14 37 39 65 63 38 50 64 49 1
15 39 41 67 65 40 51 66 50 1
16 41 43 69 67 42 52 68 51 1

111
1811
2711
4411
5311

1 1 2
43200"
1 50

' 42S0
5000 5000

1 17 -1 1 3
0.0 0.0 3.1E-3 100.0 1.0 100.

53

Figure A.6 Cantilever Beam Problem: Input for the 8NQ Element
Discretization.



159

SOIL-STRUCTURE INTERACTION ANAL. USING 4NQ AXIS. CONT.ELEMS. 7/25/85 b
300 252 2 31 1600 0.5E-6 2 1

3 1

1 9 14 YUMA SOIL PARAMETERS
0.05

0.173E-3 0.158E7 0.38 0.01 5.0 1.0 2.0 ,

0.2644E5 -0.122 0.38
0.4429E5 -0.156 0.38
0.1553E6 -0.192 0.38
0.3442E6 -0.212 0.38
0.2199E7 -0.999 0.38
0.2199E7 0.0 0.38
0.7249E2 0.0 0.65E6 -O.1E7
2 9 14 FIBER REINF. CONC. PARAMETERS

0.05
0.2516E-3 0.42E7 0.24 0.01 4.0 1.0 3.0
0.1125E7 -0.6E-2 0.24
0.1940E6 -0.32E-1 0.24
.1380E6 -0.5E-1 0.24 p
.2700E7 -0.999 0.24

0.1125E7 0.625E3 0.24
0.4E3 0.2E3 0.81E4 -0.47E4 0.2916E5 -0.268E5
1 0.0 0.0
7 0.0 36.0
8 6.0 0.0
14 6.0 36.0
15 12.0 0.0
27 12.0 72.0
28 18.0 0.0
40 18.0 72.0
41 24.0 0.0
53 24.0 72.0
54 30.0 0.0

30.0 72.0
67 36.0 0.0
79 36.0 72.0
80 42.0 0.0
92 42.0 72.0
93 48.0 0.0

105 48.0 72.0
106 54.0 0.0
118 54.0 72.0
119 60.0 0.0
131 60.0 72.0
132 66.0 0.0
144 66.0 72.0

Figure A.7 Soil-Structure Interaction Problem: Input for the Finer
4NQ Element Discretizatlon.



145 72.0 0.0
157 72.0 72.0
158 78.0 0.0
170 78.0 72.0
171 84.0 0.0
183 84.0 72.0
184 90.0 0.0
196 90.0 72.0
197 96.0 0.0
209 96.0 72.0
210 102.0 0.0
222 102.0 72.0
223 108.0 0.0
235 108.0 72.0
236 0.0 36.0
248 0.0 72.0
249 3.0 36.0
261 3.0 72.0
262 6.0 36.0
274 6.0 72.0
275 9.0 36.0
287 9.0 72.0
288 12.0 36.0
300 12.0 72.0
1 1 8 9 2 1
6 6 13 14 7 1
7 8 15 16 9 1

12 13 20 21 14 1
13 15 28 29 16 1
24 26 39 40 27 1
25 28 41 42 29 1
36 39 52 53 40 1
37 41 54 55 42 1
48 52 65 66 53 1
49 54 67 65 55 1
60 65 78 79 66 1
61 67 80 81 68 1
72 78 91 92 79 1
73 80 93 94 81 1
84 91- 104 105 92 1
85 93 106 107 94 1
96 104 117 118 105 1
97 106 119 120 107 1

108 117 130 131 118 1
109 119 132 133 120 1
120 130 143 144 131 1
121 132 145 146 133 1

Figure A.7 Soil-Structure Interaction Problem: Input for the Finer
4NQ Element Discretization (Continued).
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132 143 156 157 144 1
133 145 158 159 146 1
144 156 169 170 157 1
145 158 171 172 159 1
156 169 182 183 170 1 Ph

157 171 184 185 172 1
168 182 195 196 183 1
169 184 197 198 185 1
180 195 208 209 196 1
181 197 210 211 198 1
192 208 221 222 209 1
193 210 223 224 211 1
204 221 234 235 222 1
205 236 249 250 237 2
216 247 260 261 248 2
217 249 262 263 250 2 ON

228 260 273 274 261 2
229 262 275 276 263 2
240 273 286 287 274 2
241 275 288 289 276 2
252 286 299 300 287 2

101
-1501 7
2801

-21001 13 :0

22311
22410

-23510 1
20 16 13 1 o-

248204DrS248
248224ACC248
261204DIS261
261224ACC261
274204DIS274
274224aCC274
287204DIS287
287224ACC287
300204DIS300
300224ACC300
105204DTS105
105224ACCI05
118204DIS118
118224ACC118
131204DIS131
131224ACC131
215 645TR 215
216 64STR 216

Figure A.7 Soil-Structure Interaction Problem: Input for the Finer
4NQ Element Discretization (Continued).
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227 64STR 227

228 64STP 228
239 64STR 239

240 64STR 240
251 64STh 251
252 64STR 252

n 95 64STR 95
96 64STR 96

107 64STR 107
108 64STR 108
253 S4ENERGOY ERROR

1600 3
1601 40 24 56
248 261 274 287 300 246 259 272 285 298 244 257 270 283 296
105 118 131 103 116 129 :01 114 127

215 216 227 228 239 240 251 252 213 214 225 226 237 238 249

250 211 212 223 224 235 236 247 248 209 210 221 222 233 234
245 246 95 96 107 108 93 94 105 106 91 92 103 104 69

-p 90 101 102 87 88 99 100 85 86 97 98

1 5 -2 0 0 13 9
0.0 0.0 0.2E-3 0.515 0.4E-3 0.25E5 0.12E-2 0.15E5

0.31-2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 1000.
0.4021-1 500.

248
2 17 -2 0 0 13 9

0.0 0.0 0.2E-3 0.SE5 0.4E-3 0.25E5 0.12E-2 0.:5E5

0.3E-2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 iCO0.

0.4029-1 500.
27
1 9 17 0 0

0 0.31-6 0.2 0.58 72.5 0.17

7 14 21 22 23 24 25 26 27 300 299 298 297 296 295 294

293 292 291 2WO 2" 268 275 262 249 236

Figure A.7 Soil-Structure Interaction Problem: Input for the Finer
4NQ Element Discretization (Continued).
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SOIL-STRUCTURE INTERACTION ANAL. USING 8NQ AXIS. CONT.ELEMS. 7/25/85

237 63 2 31 1600 0.5E-6 2 1
3 0 0 1

1 9 14 YUMA SOIL PARAMETERS
2.0

0.173E-3 0.158E7 0.38 0.01 5.0 1.0 2.0
0.2644E5 -0.122 0.38
0.4429E5 -0.156 0.38
0.1553E6 -0.192 0.38
0.3442E6 -0.212 0.38

+"0.2199E7 -0.999 0.38

0.2199E7 0.0 0.38
0.7249E2 0.0 0.65E6 -0.1E7
2 9 14 FIBER REINF. CONC. PARAMETERS

2.0
0.2516E-3 0.42E7 0.24 0.01 4.0 1.0 3.0
0.1125E7 -0.6E-2 0.24
0.1940E6 -0.32E-1 0.24

V. .1380E6 -0.5E-1 0.24
.2700E7 -0.999 0.24

0.1125E7 0.625E3 0.24
0.4E3 0.2E3 0.81E4 -0.47E4 0.2916E5 -0.268E5
1 0.0 0.0

19 108.0 0.0
20 0.0 6.0
29 108.0 6.0
30 0.0 12.0
48 108.0 12.0
49 0.0 18.0
58 108.0 18.0
59 0.0 24.0
77 108.0 24.0
78 0.0 30.0
87 108.0 30.0
88 0.0 36.0

106 108.0 36.0
107 12.0 42.0
115 108.0 42.0
116 12.0 48.0
132 108.0 48.0
133 12.0 54.0
141 108.0 54.0
142 12.0 60.0
158 108.0 60.0
159 12.0 66.0
167 108.0 66.0

Figure A.8 Soil-Structure Interaction Problem: Input for the Finest

8NQ Element Discretization.
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168 12.0 72.0
184 108.0 72.0
185 0.0 36.0189 12.0 36.0.

190 0.0 39.0
192 12.0 39.0
193 0.0 42.0
197 12.0 42.0"'

.

198 0.0 45.0-"
200 12.0 45.0

1641

201 1.0 48.0 b
205 12.0 48.0
206 0.0 51.0
208 12.0 51.0
209 0.0 54.0

213 12.0 54.0
214 57.0
216 12.0 57.0 -.

217 60.0
221 12.0 60.0
222 63.0
224 12.0 63.0
225 66.0 y
229 12.0 66.0
230 69.0
232 12.0 69.0
233 72.0
237 12.0 72.0 N-

1 1 3 32 30 2 21 31 20 1 29
3 59 61 90 38 60 79 89 78 1 29
2 3 5 34 32 4 22 33 21 1 29
6 61 63 92 90 62 80 91 79 1 29
7 90 92 118 116 91 108 117 107 1 26
9 142 1" 170 168 143 160 169 159 1 26

10 5 7 36 34 6 23 35 22 1
12 63 65 94 92 64 81 93 80 1 29
13 92 94 120 118 93 109 119 108 1 26
15 1" 146 172 170 145 161 171 160 1 26

3 796_9_8 6 7 9 7 1 29.

16 9 38 36 8 24 37 23 1 29

18 65 67 96 94 66 82 95 81 1 29
19 94 96 122 120 95 110 121 109 1 26 ..
21 146 148 174 172 147 162 173 161 1 26
22 9 11 40 38 10 25 39 24 1 29

24 67 69 98 96 68 83 97 82 1 29
25 96 98 124 122 97 109 123 100 1 26

27 148 150 176 174 149 163 175 162 1 26
28 11 13 42 40 12 26 41 25 1 29

Figure A.8 Soil-Structure Interaction Problem: Input for the Finest
8NQ Element Discretization (Continued).
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165 ap

30 69 71 100 98 70 84 99 83 1 29
31 98 100 126 124 99 112 125 111 1 26
33 150 152 178 176 151 164 177 163 1 26
34 13 15 44 42 14 27 43 26 1 29
36 71 73 102 100 72 85 101 84 1 29
37 100 102 128 126 101 113 127 112 1 26
39 152 154 180 178 153 165 179 164 1 26
40 15 17 46 44 16 28 45 27 1 29
42 73 75 104 102 74 86 103 85 1 29
43 102 104 130 128 103 114 129 113 1 26
45 154 156 182 180 155 166 181 165 1 26
46 17 19 48 46 18 29 47 28 1 29
48 75 77 106 104 76 87 105 86 1 29
49 104 106 132 130 105 115 131 114 1 26
51 156 158 184 182 157 167 183 166 1 26
52 185 187 195 193 186 191 194 190 2 8
57 225 227 235 233 226 231 234 230 2 8
58 187 189 197 195 188 192 196 191 2 8
63 227 229 237 235 228 232 236 231 2 8

101 -
-1801 1
1911
2910
4810
5810
7710
8710
10610
11510
13210
14110
15810
16710
15410

20 16 13 1
233204DIS233
233224ACC233
234204DIS234
234224GC234
235204DIS23S '
235224aCC235
236204DIS236
236224ACC236 P
237204DIS237
237224ACC237
174204DIS174
174224ACC174

Figure A.8 Soil-Structure Interaction Problem: Input for the Finest
8NQ Element Discretization (Continued).
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175204DIS175 b
175224ACC175
176204DIS176
176224ACC176
57 645TR 57#1
571945TR 57#2
57324STR 57#3
57454STR 57*4 I
63 64STR 63#1
63194STR 6302
63324STR 6303
63454STR 63#4
27 645TR 27*1
27194STR 2732
27324STR 27*3
27454STR 27#4
64 54 ENERGY ERROR
1600 3

1601 40 24 14 f.?
233 234 235 236 237 225 226 227 228 229 217 218 219 220 221
174 175 176 148 149 150 122 123 124
57 63 56 62 55 61 54 60 27 26 25 24 23 22 S

1 5 -2 1 9
0.0 0.0 0.2E-3 0.515 0.4E-3 0.2515 0.12E-2 0.15E5

0.3E-2 7000. 0.6E-2 3000. 0.10201-1 2200. 0.2020E-1 1000.
0.402E-1 500.
233

2 17 -2 1 9
0.0 0.0 0.2E-3 0.515 0.4E-3 0.2515 0.121-2 0.1515

0.3E-2 7000. 0.61-2 3000. 0.1020E-1 2200. 0.2020E-1 1000. .

0.4021-1 500.
168

1 9 17.
0 0.3-6 0.2 0.58 72.S 0.17

M 69 90 107 116 133 142 159 165 237 232 229 224 221 216 213
208 205 200 197 192 189 158 187 186 185

,

.

?'f

Figure A.8 Soil-Structure Interaction Problem: Input for the Finest ;
8NQ Element Discretization (Continued). .
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4.

ELAST.-PERFECTLY PLAST. ANAL.OF A FIXED-ENDED BEAM WITH A CONC.LD (4NQ ELEMS.)
85 64 1 10 2000 3.4t-5 1 0 2000.

3 0 0 0
32.2 FT

1 3 4 4-NODE PLANE CONTINUUM ELEMENTS
0.01 2.0
16.0 4176.0E6 0.0 0.01 1.0

0.1E-2 0.4176E7
1 0.0 0.0

17 16.0 0.0
18 0.0 1.0
34 16.0 1.0
35 0.0 2.0
51 16.0 2.0
52 0.0 3.0
68 16.0 3.0
69 0.0 4.0
85 16.0 4.0

1 1 2 19 18 1
16 16 17 34 33 1
17 18 19 36 35 1
32 33 34 51 50 1
33 35 36 53 52 1
48 50 51 68 67 1
49 52 53 70 69 1

64 67 68 85 84 1
111

1711

1811
3411
3511
5111
5211
6811
6911

a-' 5"11
10 S 24 2

9204Y-DISPL 0= 9

43N4TY-Z'L 43
60204T-DISPL NOS 60
77204-DSPL ION 77~1 1 54613~ 1
175 45117
33 S t 33
49 S4= 49

2 S4 t 2
-p., 18 541 181

34 545T3 34
50 54STR 50

3 54STR 3
19 54T 19
S3554STR 35

Figure A.9 Fixed-Ended Beam Problem: Input for the 4NQ Discretiza-
tion.

el
~V '9..a~w.~?............~ J~a~* ~ b a.ca
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51 S4ST1 51
6 S4STR 6

22 54STR 22
38 54STR 38
54 54STI 54

7 S4STR 7

23 54ST 23

39 54STR 39
55 SWIA5 55S S4STU SS""
8 S4STIR 9I

24 54ST 24
40 545TR 40
56 54STR 56
1000 3
2000 3

1 5 1 2 17 5.1-2 -4.1472E6
0.0 1.7E-2 -2.764826 3.4E-2 -2.7648E6

1.0 -4.1472E6
9

,"a

Figure A.9 Fixed-Ended Beam Problem: Input for the 4NQ Discretiza-

tion (Continued).
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ELAIST.-PIRFEC'TLY PLAST. ANAL.OF A FIXED-ENDED BEAM WITH A CONC.LD.(8NQ ELEMS.)

69 16 1 10 2000 3.4E-5 1 0 2000.0

3 0 0 1

32.2 FT
1- 0 8-NODE PLANE CONTINUUM ELEMENTS

2.0 2.0
16.0 4176.0E6 0.00 0.01 1.0

0.1E-2 0.417617

17 16.0
is 1.0
26 16.0 1.0
27 2.0
43 16.0 2.0

3.0
52 16.0 3.0
53 4.0
69 16.0 4.0
1 1 3 29 27 2 19 28 18 1

2 3 5 31 29 4 20 30 19 1
3 S 7 33 31 6 21 32 20 1

4 7 9 35 33 8 22 34 21 1
5 9 11 37 35 10 23 36 22 1

6 11 13 39 37 12 24 38 23 1
7 13 15 41 39 14 25 40 24 1
8 15 17 43 41 16 26 42 25 1

9 27 29 55 53 28 45 54 44 1
10 29 31 57 55 30 46 S6 4S 1
11 31 33 59 57 32 47 SS 46 1
12 33 35 61 59 34 4 60 47 1
13 3S 37 63 61 36 49 62 41 1
14 37 39 65 63 34 S0 44 49 1
1S 35 41 67 6S 60 $1 SO I

16 41 43 69 67 42 52 6 S 51 1
111

: 10111-

2711
4411
U311
1711
2611
4311
5211
6911

16" 5 24 2
92M-45PL MW 9

222001-DZ51L N= 22
3SK M-9UIL 3S,
48204Y-DISPL NOW 48
61204Y-DOSPL NODE 61
1 S4STR 101
11S45TR 102
9 545TR "I

Figure A. O Fixed-Ended Beam Problem: Input for the 8NQ Discretiza-
S, tion.

Ir r or w 1. F



170

9154STR "42

12S4STR 163

1354STR 104
9254STR 9*3
9354STR %b4
2 54STR 2#1
21S4STR 242

10 S4STR1001
101S4ST1002

3254STI 363
3354STR 394
11254STR1103
11354STR1104
4 54STR 401
41S4STR 4#2

-, 12 54STR12*1
12154STR1232
4254STR 43
4354STR 4*4

122 54STR12*3
12354ST31214
1000 3
2030 3

5 1 2 13 5
1.7E-2 -2.764816 3.4E-2 -2.7648E6 5.1E-2 -4.1472E6

1.0 -4.147296

Figure A. 10 Fixed-Ended Beam Problem: Input for the 8NQ Discretiza-
tion Continued).



AXIS. ANAL. OF ONE-DIKENSIONAL WAVE PROPAGATION WITH DISPL./FREE END(4iJQ ELEMS)
27 16 1 6 130 0.25 1 0

31
980. CH DYME DYNE

1 6 14 ELASTIC PLANE STRESS
0.0
1.0 1.0 0.0 0.0

1 0.0 0.0
-S 0.0 16.0

10 2.0 0.0
is 2.0 16.0
19 4.0 0.0
27 4.0 16.0
1 1 10 11 21
a a 17 18 9
9 10 19 20 111

16 17 26 27 181
112

1012
1912
910

1810
7. 2710

1 19 6 3
1204Y-DISPL MODEn 1
3204Y-DISL MOD~s 3
5204Y-DISL NODEn 5
7204Y-DISPL X001w 7

12204Y-DISYL M0D31I2
14204Y-DISI'L ND~s4
163MY-9Z1L *16G

- .. '21204Y-DISWL inm~i
232W04T4131L

3314-"L rmm 3

721UT-ML NO 7
12214T-VIL inw.1

141-M MW4

21214Y-YEL 3f21
23Z14T-V3L OW23
2SZ14Y-MX MUC025

2 6491 S 9L 2
4 641t55 n=I 4

10 w4nSXin 10
12 6U" UM 12
14 "STRISS XLK 14

25 3
so 3

130 3
150 1 10 6

Figure A.11 Axisynimetric Wave Propagation Problem: Input for the 4NQ
Dl SCreti zation.
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1 3 S 7 12 14 16 21 23 25
2 4 6 10 12 14
1 3 2 2 9 10

0. 0. 2. 8.01-5 4. 2.93E-3 6. 6.17E-3
a. .01 10. 1.393E-2 12. 1.707E-2 14. 1.924E-2

16. .02 35. .02
1 19

FiueA1 xsmmti aePoagto rbe: Inu.o h N

Diceiain(otne)
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AXIS. ANAL. OF ONE-DIENSIONAL WAVE PROPAGATION WITH DISPL./FREE ED(SNQ EL.EMS)
69 16 1 10 130 0.25 1 0

3 1
980. CH DYNE DYNE

1 6 14 ELASTIC PLANE STRESS
2.0
1.0 1.0 0.0 0.0

1 0.0 0.0
5 4.0 0.0
6 0.0 1.0
8 4.0 1.0
9 0.0 2.0

. 13 4.0 2.0
14 0.0 3.0
16 4.0 3.0
17 0.0 4.0
21 4.0 4.0
22 0.0 5.0
24 4.0 5.0
25 0.0 6.0
29 4.0 6.0
30 0.0 7.0
32 4.0 7.0
33 0.0 5.0
37 4.0 8.0
38 0.0 9.0
40 4.0 9.0
41 0.0 10.0
4S 4.0 10.0
46 0.0 11.0

4 4.0 11.0
49 0.0 12.0
S3 4.0 12.0
54 0.0 13.0
S6 4.0 13.0
S7 0.0 14.0
6 4.0 14.0
62 0.0 1S.0

644.0 IS.$
6S 0.0 16.0
69 4.0 16.0

1 1 3 11 9 2 7 10 6 1 a
& S7 S 67 65 54 63 64 52 1 a
9 3 S 13 11 4 8 12 7 1 8

16 59 61 69 67 60 64 68 63 .1 a
112 1

-512 1
6S1O 1

-6910 1
1 19 24 3

1204Y-DISPL NOLs" 1
17204Y-DrSPL N0 17
33204T-DISPL II01S3

Figure A.12 Axisymmetric Wave Propagation Problem: Input for the BNQ
Discretization.



49204Y-DISPL M0D1w49
19204Y-DZSYL NODW w9
3S204Y-DZSL WO0DE=3S
51204Y-DISPL N0DES51
21204Y-DISPL Vl0blw2i
37204Y-DIUL 0=037
S3204Y-DISPL N0DEB3

17214Y-VIL NODK=17
33214Y-VIL w M w33
49214TY1ZL N00149
19214Y-VIL NODE=19
35214Y-VEL NODE235
51214Y-VEL NODE=5i
21214Y-VEL N0DE&21

37214Y-VE1. M0DZ=37
53214Y-VIL N001*53 

'

2 64STRESS 11.2 #1
2154STRESS 11.2 62
2244SRSS 11.2 63
2334STRESS ELZ "
4 6457315 1104 61
415457T15S 114 62
4244STRESS 11.463
4334STRESS 11.4 0
6 64STRISS 16601
61S4STR1SS 11.6 62
6244ST31SS 11663
6334ST155 11.6 "
10 645TR155 11.1061
1015457T1S5 1.1062
10244STRESS EL.1003
1033457315 SIlOM %1
12 64STRUS L"201
121548TUS V."282

12334STRZSS 1112k

14 64873185 11.461"I
141 saTUmSL V.402

14334MSS 11.1404
25 3
so 3

130 3
150 1 .10 6

1 17 33 49 1t 35 5i 21 37 53

2 4 G 10 12 14
1 5 2 2 1 10

0. 0. 2. 6.01-5 4. 2.931-3 6. 6.171-3

a. .01 10. 1.3831-2 12. 1.7071-2 14. 1.924E-2

16. .02 35. .02

Figure A.12 Axlsyiunetric Wave Propagation Problem: Input for the 8N0
Disretzat,n (Continued).
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APPENDIX B

Gauss-Legendre Abscissae and Weight Coefficients

Table B.1 shows the Gauss-Legendre abscissae and weight

coefficients (±a and h) which are used in the Gaussian quadrature method

of numerical integration. These coefficients for Gaussian quadrature

are used in the SAMSON2 code in order to determine the lumped mass

matrix [M], the internal nodal force vector (Fit}, the internal strain

energy of the system U, and the external work of the system W for the

BNQ higher-order isoparametric continuum element. References 12, 14,

and 15 contain additional information about Gaussian quadrature and they

also contain a discussion on the practical applications of Gaussian

quadrature for the isoparametric element formulation.
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Table B.1 Gauss-Legendre Abscissae and Weight Coefficients for a
Particular Order of Integration n(n=1,10).a

±a h
n=1

0 2.00000 00000 00000
n=2

0.57735 D2691 89626 1.00000 00000 00000
n 3

0.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 0.88888 88888 88889

n 4
0.86113 63115 94053 0.34785 48451 37454
0.33998 10435 84856 0.65214 51548 62546

n=5
0.90617 98459 38664 0.23692 68850 56189
0.53846 93101 05683 0.47862 86704 99366
0.00000 00000 00000 0.56888 88888 88889

n 6
0.93246 95142 03152 0.17132 44923 79170
0.66120 93864 66265 0.36076 15730 48139
0.23861 91860 83197 0.46791 39345 72691
:.n -7

0.94910 79123 42759 0.12948 49661 68870
0.74153 11855 99394 0.27970 53914 89277
0.40584 51513 77397 0.38183 00505 05119

-" 0.00000 00000 00000 0.41795 91836 73469
n a 8

0.96028 98564 97536 0.10122 85362 90376
0.79666 64774 13627 0.22238 10344 53374
0.52553 24099 16329 0.31370 66458 77887
0.18343 46424 95650 0.36268 37833 78362

0.96816 02395 07626 0.08127 43M3 61574
0.83603 11073 26636 0.18064 81606 4857
0.61337 14327 00590 0.26061 06964 02935
0.32425 34234 03809 0.31234 70770 40003
0.00000 00000 00000 0.33023 93550 01260

n - 10
0.97390 65285 17172 0.06667 13443 08688

0.86506 33666 88985 0.14945 13491 50581
0.67940 95682 99024 0.21908 63625 15982
0.43339 53941 29247 0.26926 67193 09996
0.14887 43389 81631 0.29552 42247 14753

aThe values for these coefficients were obtained from page 198 of

Reference 15.
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APPENDIX C

Development of the Elastic-Plastic Stress-Strain Matrix

for the Plane Strain or Axisymmetric Material Law

The general equation that is used in order to determine the

elastic-plastic stress-strain matrix (CEP) for biaxial analysis is shown

in Equation C.1 (see pp. 388-389 of Reference 14).

CEP CE - E{(q}(c {}qJ T  (C.1)(p} T(q) + {q} C E(q}

where,

CE * elastic stress-strain matrix,

T
i.(q)T rj [q222q1 q331

{p1T = CP11 P22 P12 P33)

This equation was formulated under the assumptions of isothermal

conditions, isotropic hardening and an associated flow rule. The values

for (q) and (p) are determined using the expressions shown in

Equatio C.2.

•i 3 F 3 F '
To .j P. . Up (C.2)

ij

where,

F yield function that specifies the state of multiaxial
stress which corresponds to the start of plastic flow.

a - normal and shearing stress components, and

Ci - plastic strain increments.

*~~~ ~ .~ .% .y .% ' -. . .' .' ~ . ... ....
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The CEP matrix for the biaxial elastic-plastic plane strain or

axisynmetric material law was developed by substituting the expressions

shown in Equation C.3 into Equations C.1 and C.2.

1I on 2S S -y (C.3)

qij Si Pij ' H aj)

where,

S deviatoric stresses,

0 +0 +0aI

where tj 1 1 for the normal stresses and
0 for the shear stresses, and

H 2 2 EErT
T-

The development of CEP was performed In three tasks. The first task was

the multiplication of CE (Equation 4.39 in Section 4.2.4.2) by {q). Tie

results of this multiplication art shown in Equation C.4.

fS11 Tv (S2+S3)
C E+) (Szi + S 33) (

v SS2 r' (Sl1 + 533)
cE } E12- )(C.4)

533 + I (Sll + S22)

The next task was the multiplication of (p)T by (qi with the result

shown in Equation C.5.

S
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T 2 EET n 2 (C.5)
{p} (q) T yld

where,
n  2 2. ( + 2 + a2 a a a a a a + 2T 2

"y dx ll xy z y z xy

The final task involved the substitution of the results shown in

Equations C.4 and C.5 into Equation C.1. This task resulted in the CEP

matrix shown in Table C.1. This matrix was used in subroutine STRES3

according to the discussion in Sections 4.2.4.2 and 4.2.4.3.

1.-I
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